COLLABORATIVE CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA WITH
INFORMATION FUSION AND DEEP NETS

Chen Chen !, Xudong Zhao 2 Wei Li %, Ran Tao 2, Qian Du 3

! College of Information Science & Technology, Beijing University of Chemical Technology

2 School of Information and Electronics, Beijing Institute of Technology, Beijing, China

3 Department of Electrical and Computer Engineering, Mississippi State University

ABSTRACT

Convolutional neural network (CNN) receives extensive at-
tention in hyperspectral image classification. While hyper-
spectral images contain abundant spectral information but
lack spatial information, which usually contributes to poor
classification results. In this paper, a novel classification
framework called information fusion based CNN (IF-CNN)
is proposed to compensate for the shortcomings of hyper-
spectral images. The proposed method merges hyperspectral
images with abundant spectral information and LiDAR im-
ages with rich spatial information as the input of classifica-
tion framework. Furthermore, the framework consists of two
convolutional neural networks: one-dimensional CNN for
extracting spectral features, and two-dimensional CNN for
extracting spatial correlation features. Experimental result-
s demonstrate that the proposed method achieves excellent
performance compared with some existing methods.

Index Terms— Hyperspectral Image, Information Fu-
sion, Convolutional Neural Network, Deep Learning, Pattern
Recognition.

1. INTRODUCTION

Hyperspectral imagery (HSI) attaches considerable inerest in
recent years and has been widely applied in mineral exploita-
tion, environmental science and earth observation, etc. In the
early stage of HSI classification, many machine learning algo-
rithms were introduced. Support vector machine (SVM) [1],
extreme learning machine (ELM) [2], relevance vector ma-
chine (RVM)[3] and markov random fileds (MRFs)[4] were
investigated and achieved satisfactory performance.
Recently, deep learning methods have been successfully
applied in remote sensing image analysis. Zhang et al.[5] first
attempted to evaluate the performance of many state-of-the-
art deep learning algorithms on remote sensing images. Hu et
al. [6] employed convolutional neural network to extract the
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spectral features of HSI, and the performance was obvious-
ly superior to SVM. Subsequently, further improvement re-
searches based on CNN emerged. Diverse region-based CNN
(DR-CNN) encode semantic context-aware representation to
obtain promising features [7]. Pixel-Pair Features CNN (PPF-
CNN) significantly increased the number of training samples
by pixel pairing [8]. Two-Branch CNN adopted feature fu-
sion method to fuse HSI and LiDAR or high-resolution visual
image, which effectively combined the advantages of images
from different sensors [9].

Hyperspectral images consist of hundreds of narrow spec-
tral bands, in which rich spectral information helps to dis-
tinguish different materials. However, the low resolution of
HSI limits its development in classification tasks. In this pa-
per, we merge high-resolution LiDAR and HSI using infor-
mation fusion method, and the merged images possess both
high-resolution and rich spectral information. Furthermore,
dual-tunnel CNN framework is used for classification. One-
dimensional CNN and two-dimensional CNN are employed
to extract spectral and spatial features, respectively.

2. INFORMATION FUSION BASED CNN
FRAMEWORK

The flowchart of proposed IF-CNN classification framework
is shown in Fig. 1. Part I. explains the information fusion
process, Part II. illustrates dual-tunnel CNN classification
framework, which consists of one-dimensional CNN and
two-dimensional CNN.

HSTI has large number of channels, which is quite useful
for distinguishing different materials. However, the low res-
olution of HSI limits its development in classification tasks.
While a prime feature of LiDAR is the high resolution, which
is dominant in identifying elevation information. Therefore
,we use information fusion method to merge HSI and LiDAR,
and obtain the image combining the advantages of both. The
methodology we used is the Principal Component (PC) Spec-
tral Sharpening in ENVI. ENVI is deployed a variety of infor-
mation fusion methods. Specifically, PC Spectral Sharpening
is especially suitable for processing HSI.
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Fig. 1. Flowchart of the proposed IF-CNN for HSI classication.
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Fig. 2. The detailed structure of dual-tunnel CNN Classifica-
tion Framework.

The concrete process of PC Spectral Sharpening method
is as follows. 1) Performing principal component analysis on
HSI and find each principal component. 2) Making a his-
togram to match LiDAR with the first principal component.
3) Replacing the first principal component with a high spatial
resolution image produced in the previous step. 4) The new
first principal component is inversely transformed with other
principal components to generate merged images with high
spatial resolution.

Dual-tunnel CNN classification framework is then used
to extract features of the merged image. Both spectral and
spatial information are critical to HSI pixel level classifi-
cation. Therefore, we construct 7 x 7 x L pixel blocks
for two-dimensional CNN, and 1 x 1 x L pixel blocks for
one-dimensional CNN (L is the number of bands). Fig.2
demonstrates detailed structure of the framework. In two-
dimensional CNN, each convolution process involves a cer-
tain operation, including two dimensional CNNs (conv2D)
and two batch normalization layers. All the convolution op-

Table 1. Overall classification accuracy (%) versus different
types of data. (H: HSI, L: LiDAR)

MUUEFL Gulfport
[ H [ LI [ L2 [ H+LI [ H+L2
OA [ 83.90 [ 6791 | 70.00 [ 90.64 [ 92.51

erations are executed with zero padding, and the convolution
stride is set as 1. In addition, Relu is employed as an acti-
vation function, Dropout is used to prevent overfitting. In
one-dimensional CNN, one dimensional CNN (conv1D) is
applied to extract spectral features, and convolution opera-
tions are executed without zero padding. Finally, the features
obtained by the two CNNs are flattened and concatenated to-
gether. We use the fully connected network to extract features
again and apply softmax to predict the classification label of
the testing pixels. The learning rate is one of the factors that
affects the convergence of speed and training performance.
The learning rate is set as 0.0001 with the policy of Adam.

3. EXPERIMENTAL RESULTS

For the proposed IF-CNN, all the programs are implemented
in Python language, and the network is constructed using Ten-
sorFlow! and Keras”. TensorFlow is an open source software
library for numerical computation using data flow graphs, and
Keras can be seen as a simplied interface to TensorFlow.

3.1. Experimental Data

Classification performance of the proposed IF-CNN is eval-
uated on MUUFL Gulfport data. MUUFL Gulfport data

Uhttp://tensorow.org/
Zhttps://github.com/fchollet/keras
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Table 2. Comparison of the overall classification accuracy (%) among the proposed method and the baselines using the MUUFL

Gulfport data. (H: HSI, L: LiDAR)

class SVM SVM | ELM | ELM | PPF-CNN | PPF-CNN | Two-branch CNN | Two-branch CNN | IF-CNN | IF-CNN
(Train/Test) (H) H+L2) | H) | H+L2) (H) (H+L2) (H) (H+L2) (H+L1) | (H+L2)
Trees (150/23096) 8250 | 83.16 | 7926 | 83.61 86.92 91.76 91.75 92.03 9247 95.46
Mostly grass (150/4120) 7857 | 77.16 | 7755 | 8233 81.84 75.85 86.31 75.32 92.84 85.44
Mixed ground surface (150/6732) | 72.04 | 6924 | 67.86 | 68.64 86.96 88.67 80.94 84.02 78.19 86.22
Dirt/Sand (150/1676) 86.04 | 86.16 | 8347 | 86.93 93.26 88.90 92.84 95.41 98.45 97.02
Road (150/6537) 86.35 87.82 | 87.12 | 87.73 90.09 92.12 87.49 92.73 87.85 90.55
Water (150/316) 9430 | 99.68 | 92.09 | 97.15 99.37 100.00 99.68 100.00 100.00 99.68
Building shadow (150/2083) 88.00 | 9270 | 84.16 | 89.29 91.07 91.07 92.80 91.98 93.81 9275
Buildings (150/6090) 7819 | 8943 | 8057 | 89.11 91.49 94.24 87.70 94.01 96.45 95.14
Sidewalk (150/1235) 7368 | 7498 | 72.63 | 74.01 7174 71.98 85.26 76.28 83.56 83.97
Yellow curb (150/33) 100.00 | 100.00 | 93.94 | 96.97 90.91 81.82 96.97 100.00 96.97 96.97
Cloth panels (150/119) 9832 | 99.16 | 9832 | 98.32 97.48 97.48 98.32 96.64 98.23 96.64
OA 8106 | 82.63 | 79.00 | 82.97 8757 39.90 38.90 39.79 90.64 92.51

set was collected in November 2010 over the Universi-
ty of Southern Mississippi Gulf Park Campus, located in
Long Beach, Mississippi. The data collection contains co-
registered hyperspectral and LiDAR data over the campus.
The hyperspectral imagery consists of 325 x 220 pixels and
64 spectral channels. In additon, there are 11 different land-
cover classes in the ground truth.

3.2. Classification Performance

MUUFL Gulfport data contains one hyperspectral data and
two LiDAR datas from two different flights. We mark hyper-
spectral image as H, LiDAR from two different flights as L1
and L2, the image generated by information fusion of H and
L1 as H+L1, and the image generated by information fusion
of H and L2 as H+L2. The classification results of the pro-
posed method using these images respectively are illustrated
in Table 1. The classification accuracies of H+L1 and H+L2
are significantly better than H, L1 and L2, which strongly
suggests that the information fusion process combines the ad-
vantages of HSI and LiDAR. In addition, the result of L2 is
superior to L1, and the result of H+L2 is superior to H+L1.
Therefore, L2 is finally selected for information fusion with
H, and H+L2 is utilized in the following experiments.

When the block window size is set to 11 x 11, the per-
formance of the proposed IF-CNN is compared with some
state-of-the-art HSI classication approaches, such as SVM,
ELM, PPF-CNN and Two-branch CNN. In each class, we ran-
domly select 150 samples for training and the rest for testing.
The classification results are listed in Table 2. The classifica-
tion with information fusion are obviously better than those
with only HSI, and the proposed IF-CNN is significantly su-
perior to all the other classifiers. Among them, the classi-
fication accuracies of Trees, Buildings and Road are signifi-
cantly improved in each classifiers after information fusion.
This is because that HSI mainly distinguishes different class-
es by spectral information of different materials. However,
for some classes with similar materials, HSI is not advanta-

geous in classification, such us trees and mostly grass, build-
ings and road. The elevation information of LiDAR can be
used to solve this problem. There are many gaps between
leaves of trees, and LiDAR can capture this feature to distin-
guish it from other classes; Buildings and road are all made
of concrete, but the elevation of buildings is higher than road,
which make it easy to distinguish them. Fig. 3 illustrates the
classication maps, in which we present several classication re-
sults in Table 2. It can be easily find that the classication map
achieved by H+L is evidently less noisy than that achieved
by H. And IF-CNN(H+L2) achieves the best classification re-
sults.

The construction of pixel block facilitates pixel classifica-
tion, since the spatial information contained in the surround-
ing pixels is critical to the central pixel. When the number
of training samples is 150 per class, we compare the perfor-
mance of two-branch CNN and IF-CNN on different pixel
window sizes. The performances are demonstrated in Fig. 4
(a). Obviously the proposed IF-CNN performs better and the
window size of 11 x 11 provides a more prominent perfor-
mance. As shown in Fig. 4 (b), when the pixel window size is
11 x 11, we compare the classification of different numbers of
training samples per class. As the number of training samples
increases, the classification results are getting better. IF-CNN
is superior to two-branch CNN and the maximum accuracy is
achieved when the number of training samples is 150.

4. CONCLUSIONS

In this paper, a novel information fusion based CNN frame-
work is proposed for hyperspectral image classication on
MUUEFL Gulfport data. The main contributions are summa-
rized as follows. (1) IF-CNN is employed to combine the
advantages of HSI and LiDAR images. LiDAR images have
high resolution, strong penetration and sufficient elevation
informations, which significantly aids HSI to achieve better
classification results. (2) A dual-tunnel CNN classification
framework is utilized to extract the features of the image
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Fig. 3. Thematic maps resulting from classication for the MUUFL Gulfport data with 11 classes: (a) False-color image, (b)
LiDARI image, (c) LiDAR2 image, (d) Information fusion imagel, (e) Information fusion image2, (f) Ground-truth map,
(g) Two-branch CNN(H): 88.90%, (h) Two-branch CNN(H+L2): 89.79%, (i) IF-CNN(H+L1): 90.64%, (j) IF-CNN(H+L2):

92.51%.
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Fig. 4. Overall classification accuracy (%) of various bolck
window sizes and different numbers of training samples per
class.

after information fusion. Experimental results demonstrate
that the proposed IF-CNN can provide statistically better
performance than state-of-the-art classifers.
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