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ABSTRACT
Collaborative classification of hyperspectral imagery (HSI)
and light detection and ranging (LiDAR) data is investigat-
ed using effective hierarchical random walk networks, denot-
ed as HRWN. The proposed HRWN jointly optimizes dual-
tunnel CNN, pixelwise affinity and seeds map via a novel
random walk layer, which enforces spatial consistency in the
deepest layers of the network. In designed random walk lay-
er, the predicted distribution of dual-tunnel CNN serves as
global prior while pixelwise affinity reflects local similarity
of pixel pairs, which preserves boundary localization and s-
patial consistency well. Experimental results validated with
two real multisource remote sensing data demonstrate that the
proposed HRWN can significantly outperform other state-of-
art methods.

Index Terms— Hierarchical random walk, convolution-
al neural network (CNN), hyperspectral image (HSI), multi-
source remote sensing classification.

1. INTRODUCTION

Remotely-sensed hyperspectral images (HSI), with wealthy
spectral information to uniquely discriminate various mate-
rials of interest, has been widely applied to the land-cover
observation [1, 2]. Furthermore, as a supplementary, Light
detection and ranging (LiDAR) data, which provide eleva-
tion information about the surveyed area, is valuable for bet-
ter characterizating the same scene acquired solely by optical
sensors, such as HSI [3]. Collaborative classification of HSI
and LiDAR can help to integrate diverse information to fur-
ther improve earth observation performance.

Numerous researches have stated that classification tasks
can be modified by integrating HSI and LiDAR features [4, 5].
Deep learning-based methods have aroused wide attention for
their capabilities of automatical extracting robust and high-
level features, which are known to be generally invariant to
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most local changes of the input [6, 7]. For the sake of ex-
tracting high-level features in HSI, deep convolutional neural
network (CNN) was exploited to extract useful information
for HSI classification [6–9].

However, large receptive fields in the convolutional layers
and the presence of pooling layers lead to low spatial resolu-
tion in the deepest CNN layers. Thus, the corresponding pre-
dicted classes tend to be spatially disjoint and lack fine object
boundary details. These approaches often fail to accurate-
ly capture relationships between classes and lead to spatially
fragmented classification. When employing CNN into HSI or
LiDAR classification, this challenge always exists.

In this paper, we attempt to focus on the weak bound-
ary and spatially fragmented classification issue. Inspired by
random walk methods [10–12], a simple yet effective hierar-
chical random walk network (HRWN) is proposed. The pro-
posed HRWN jointly optimizes dual-tunnel CNN, pixelwise
affinity and initial seeds map via a novel random walk lay-
er, which enforces spatial consistency in the deepest layers of
the network. In the random walk layer, the predicted distri-
bution of dual-tunnel CNN serves as global prior while pix-
elwise affinity reflects local similarity of pixel pairs. Finally,
the classification map is obtained by computing the probabil-
ity distribution of each unassigned pixel.

The main contributions are summarized as follows: (1) A
novel dual-tunnel CNN predicting merged HSI and LiDAR
date is applied to obtain prior distribution among pixels. (2)
Pixel similarity of LiDAR image reflected by affinity matrix is
considered for spatial consistency and boundary details. (3) A
hierarchical random walk layer introduces spatial constrain-
t and local seeds guidance into the deepest layer of CNN,
which alleviates the problems of weak localization around the
boundaries and spatially disjoint of classification map. Ex-
perimental results validated with real remote sensing datasets
demonstrate the effectiveness of the proposed method.
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Fig. 1. The proposed feature extraction and classification framework of HRWN. Ellipse nodes denote the original nodes and
circle nodes are auxiliary nodes. Green nodes are unseeded nodes, blue nodes are prior distribution and other color nodes are
seeds. Only part of the transition edges are shown for simplification.

2. PROPOSED CLASSIFICATION FRAMEWORK

The framework of the proposed HRWN is illustrated in Fig. 1,
which consists of three branches: (1) a dual-tunnel CNN
branch that predicts classification potentials, (2) a pixel-level
affinities branch predicting local similarities, and (3) initial
seeds map indicating prior knowledge of training sets. A nov-
el random walk layer merges the three branches to optimize
classification jointly. Each of the components of the HRWN
architecture will be described separately.

2.1. Dual-Tunnel CNN Branch

For dual-tunnel CNN branch as Part I shown in Fig. 1, HSI
and LiDAR images are firstly merged by Gram-Schmidt pan-
sharpening [13]. Then, as indicated in Fig. 2, a dual-tunnel
CNN is designed for the merged image which consists of a
spectral tunnel and a spatial tunnel. For the spatial tunnel, the
input is a patch centered at the pixel pij with radius r. The
merged data patch Hspa

ij ∈ Rksize×ksize(ksize = 2× r + 1)
is fed into the 2-D CNN tunnel, which includes simple oper-
ations such as 2-D convolution, activation, max-pooling and
batch normalization layers. After these layers, the output s-
patial features are flattened. For the spectral tunnel, it con-
centrates on the center pixel Hspe

ij and consists of simple 1-
D operations including convolution, activation, max-pooling
and batch nomalization. The output spectral feature F speij is
also flattened after max-pooling layer. Then the spatial and
spectral features are concatenated and fed into the softmax
classify layer to predict the probability distribution

p(i, k) =
exp(θk|FM )∑C
k=1 exp(θk|FM )

, (1)

where C is the number of classes, i is the index of pixel, θk
is the kth column of the weights in the prediction layer. The
joint spatial-spectral feature FM is expressed as FM = f(W ·
(F speij ‖ F spaij ) + b), where W and b are the weight and bias
of the full connection layer.
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Fig. 2. Overall parameter configuration of the designed dual-
tunnel CNN branch.

2.2. Pixel-level Affinity Branch

The dual-tunnel CNN can classify image using both spatial
and spectral information, but pixel similarity of original im-
age are not used. To learn the pixelwise affinities, a pixel-
level affinity branch is employed as Part II in Fig. 1. This
branch is connected with the input LiDAR image for its plen-
tiful spatial information. The image is further considered as a
weighted, undirected and connected graph G = {V,E,W},
where V is a finite set of vertices with |V | = N , E is a set
of edges, and W is a weighted adjacency matrix indicating
pixel similarity (see [14] for all definitions in this section). F
is a sparse n2×n2 matrix storing Euclidean distance between
each neighbor pixel pairs.

The non-normalized graph Laplacian is defined as L :=
D −W , where D is the diagonal degree matrix with the n-
th element dn =

∑
m6=n

Wmn being the degree of vertex n. A

weight wij ∈ W of edge eij measures the probability that
a random walker will cross this edge. As many other algo-
rithms based on graph expressed, a weight wij is formulated
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as wij = exp(− ||Ii−Ij ||
2

σ ) + ε, where Ii and Ij are the pixel
intensities at two nodes vi and vj , σ is the controlling parame-
ter and ε is a small constant. Finally, the normalization matrix
is applied to predict the ground truth pixel affinities A.

2.3. Hierarchical Random Walk Classification

Except of global distribution and pixel affinity, the training
pixels also play a significant role in classification task. In
the designed model, the training data are considered as initial
seed map indicating the label of pixels in training set. These
seeds provide local guidance for classification.

Then a hierarchical random walk layer is developed as
Part III shown in Fig. 1, which incudes: (1) prior distribution
p(i, k) ∈ P obtained by dual-tunnel CNN as global guide,
(2) affinity matrix wij reflecting pixel similarity for adjoin-
t, and (3) seeds map s(i, k) ∈ S for local guide to compute
the probability of each not assigned pixel ∆. In the RW set-
ting, the user marks some pixels in the image, then assumes
that the random walker starts with each unlabeled pixel and
calculates the probability that the random walker first arrives
at the already tagged pixels. At each pixel, the tag with the
maximum probability is selected as the final tag to obtain the
final segmentation results. In the designed hierarchical ran-
dom walk, the transition probability A on V ∪∆ ∪ S ∪ P is
formulated as

A(i, j) =


ci, if i ∈ V, j ∈ {∆} ∪ S
(1− ci) λp(i,k)di+λgi

, if i ∈ V, j ∈ P
(1− ci) wij

di+λgi
, if j ∼ i ∈ V

1, if i = j ∈ {∆} ∪ S ∪ P
0, otherwise.

(2)

where gi =
K∑
k=1

p(i, k), λ is the weight parameter of prior

distribution, ci is the weight parameter of the ith seed.
Given the transition probability A on a graph with prior,

the reaching probability rki that a random walker from a node
vi ∈ V reaching seeds s(i, k) or prior node p(i, k) is formu-
lated as

rki =
∑
j∼i∈V

(1− ci)
wijr

k
j

di + λgi
+ (1− ci)

p(i, k)

di + λgi
+ cis(i, k).

(3)
Then the classification map can be obtained asRi = arg max

k
rki ,

where k = 1, 2, . . . ,K is the label of pixel.

3. EXPERIMENTS AND ANALYSIS

In this section, two widely used remote sensing data sets are
used to validate the effectiveness of the proposed method. The
proposed HRWN is implemented using Python and Matlab
language, and the networks are constructed using Tensorflow
with the high-level API Keras.
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Fig. 3. The classification performance of HRWN with differ-
ent weight parameter c.

Table 1. Comparison of the Classification Accuracy (%) Us-
ing the Houston Data.

No. Class(Train/Test) Performance
SVM ELM CNN-PPF TB-CNN C-CNN HRWN

1 Health grass (198/1053) 82.43 83.10 83.57 83.10 84.89 85.77
2 Stressed grass (190/1064) 82.05 83.70 98.21 84.10 87.40 80.64
3 Synthetic grass (192/505) 99.80 100.00 98.42 100.00 99.86 99.14
4 Tress (188/1056) 92.80 91.86 97.73 93.09 93.49 92.52
5 Soil (186/1056) 98.48 98.86 96.50 100.00 100.00 100.00
6 Water (182/143) 95.10 95.10 97.20 99.30 98.77 98.15
7 Residential (196/1072) 75.47 80.04 85.82 92.82 82.81 95.82
8 Commercial (191/1036) 46.91 68.47 56.51 82.34 78.78 97.51
9 Road (193/1059) 77.53 84.80 71.20 84.70 82.51 87.62
10 Highway (191/1036) 60.04 49.13 57.12 65.44 59.41 85.74
11 Railway (181/1054) 81.02 80.27 80.55 88.24 83.24 98.95
12 Parking lot 1 (192/1041) 85.49 79.06 62.82 89.53 92.13 97.89
13 Parking lot 2 (184/285) 75.09 71.58 63.86 92.28 94.88 91.04
14 Tennis court (181/247) 100.00 99.60 100.00 96.76 99.77 100.00
15 Running track (187/473) 98.31 98.52 98.10 99.79 98.79 100.00

OA 80.49 81.92 83.33 87.98 86.90 93.45
AA 83.37 84.27 83.21 90.11 89.11 94.25

Kappa 0.7898 0.8045 0.8188 0.8698 0.8589 0.9292

Houston Data: The scene was acquired over the area of
University of Houston campus and neighbor area [15] in June
2012. The data consist of 349×1905 pixels covering 15 class-
es with a spatial resolution of 2.5m. Available training and
testing samples are listed in Table 1. Trento Data: The sec-
ond scene was acquired over a rural area in the south of the
city of Trento, Italy. The data consist of 600×166 pixels cov-
ering 6 classes with a spatial resolution of 1m. Table 2 lists
the available training and testing samples.

To validate the effectiveness, the proposed HRWN is
compared with several classifiers, such as the standard SVM
and ELM, recently proposed CNN-PPF [6], two-branch CNN
(TB-CNN) [8] and the context CNN (C-CNN) [7]. Tables 1–
2 list the overall accuracy (OA), averaged accuracy (AA),
and Kappa Coefficient for two experimental datasets. The
HSI and LiDAR data are concatenated together for classi-
fication. The proposed HRWN performs obviously better
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Fig. 4. Classification maps for the Houston data obtained with different methods: (a) Pseudo-color Image for HSI, (b) Gray
image for LiDAR, (c) Ground truth Map, (d)Legend, (e) SVM (80.49%), (f) ELM (81.92%), (g) CNN-PPF (83.33%), (h)
TB-CNN (87.98%), (i)C-CNN (86.90%) and (j) HRWN (93.45%).
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Fig. 5. Classification maps for the Trento data obtained with different methods including: (a) Pseudo-color Image for HSI, (b)
Gray image for LiDAR, (c) Ground truth Map, (d)Legend, (e) SVM (92.77%), (f) ELM (91.32%), (g) CNN-PPF (94.76%), (h)
C-CNN (96.11%), (i) TB-CNN (97.92%) and (j) HRWN (98.62%).

Table 2. Comparison of the Classification Accuracy (%) Us-
ing the Trento Data.

No. Class(Train/Test) Performance
SVM ELM CNN-PPF TB-CNN C-CNN HRWN

1 Apple trees (129/3905) 88.62 95.81 90.11 98.07 99.26 99.78
2 Buildings (125/2778) 94.04 96.97 83.34 95.21 86.81 90.35
3 Ground (105/374) 93.53 96.66 71.13 93.32 97.91 99.79
4 Woods (154/8969) 98.90 99.39 99.04 99.93 97.31 100.00
5 Vineyard (184/10317) 88.96 82.24 99.37 98.78 99.82 100.00
6 Roads (122/3525) 91.75 86.52 89.73 89.98 84.63 95.97

OA 92.77 91.32 94.76 97.92 96.11 98.62
AA 92.63 92.93 88.97 96.19 94.29 97.65

Kappa 0.9585 0.9042 0.9304 0.9681 0.9481 0.9815

than other methods. It is clear that due to more robust global
and local features extraction, the hierarchical model for HSI,
LiDAR and merged data can provide significant improve-
ment in classification accuracy. For qualitative evaluation of
the classification performance, visual maps are illustrated in
Figs. 4-5. Also, the ground truth map and pseudo-color maps
of entire image scenes are provided for clarity. The proposed
method produces the most accurate and noiseless classifica-

tion maps. Also, it can be concluded that the visual results
are consistent with those in Tables 1–2. In order to validate
the effects of weight between different layers, classification
results using HRWN with different weight between prior dis-
tribution, pixel affinity and seeds map are shown in Fig. 3.
An unique weight c = 0.45 can lead to best classification
performance for both datasets, which indicates that both prior
distribution and seed map contribute significantly.

4. CONCLUSION

In this paper, a hierarchical random walk network (HRWN)
was proposed for the classification fusion of hyperspectral
imagery (HSI) and light detection and ranging (LiDAR) data,
which effectively mitigated the issue of boundary localization
and spatial consistency. The proposed HRWN jointly opti-
mized dual-tunnel CNN, pixelwise affinity and seeds map via
a novel random walk layer, which enforced spatial consisten-
cy in the deepest layers of the network. Experimental results
validated with real remote sensing datasets demonstrated that
the proposed method can significantly outperform other state-
of-art methods.

2190



5. REFERENCES

[1] W. Li, E. W. Tramel, S. Prasad, and J. E. Fowler, “N-
earest regularized subspace for hyperspectral classifica-
tion,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 52, no. 1, pp. 477–489, 2014.

[2] Xiangtao Zheng, Yuan Yuan, and Xiaoqiang Lu, “Di-
mensionality reduction by spatial-spectral preservation
in selected bands,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 9, pp. 5185–5197,
2017.

[3] Jinha Jung, Edoardo Pasolli, Saurabh Prasad, James C.
Tilton, and Melba M. Crawford, “A framework for land
cover classification using discrete return LiDAR data:
Adopting pseudo-waveform and hierarchical segmenta-
tion,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 7, no. 2, pp.
491–502, Feb. 2014.

[4] Pedram Ghamisi, Bernhard Hofle, and Xiaoxiang Zhu,
“Hyperspectral and LiDAR data fusion using extinction
profiles and deep convolutional neural network,” IEEE
Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 10, no. 6, pp. 3011–
3024, June 2017.

[5] Behnood Rasti, Pedram Ghamisi, and Richard
Gloaguen, “Hyperspectral and LiDAR fusion us-
ing extinction profiles and total variation component
analysis,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 7, pp. 3997–4007, 2017.

[6] Wei Li, Guodong Wu, Fan Zhang, and Qian Du, “Hyper-
spectral image classification using deep pixel-pair fea-
tures,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 2, pp. 844–853, 2017.

[7] H Lee and H Kwon, “Going deeper with contextual CN-
N for hyperspectral image classification.,” IEEE Trans-
actions on Image Process, vol. 26, no. 10, pp. 4843–
4855, 2017.

[8] Xiaodong Xu, Wei Li, Qiong Ran, Qian Du, Lianru Gao,
and Bing Zhang, “Multisource remote sensing data clas-
sification based on convolutional neural network,” IEEE
Transactions on Geoscience and Remote Sensing, vol.
PP, no. 99, pp. 1–13, 2018.

[9] M. Zhang, W. Li, Q. Du, L. Gao, and B. Zhang, “Feature
extraction for classification of hyperspectral and LiDAR
data using patch-to-patch cnn,” IEEE Transactions on
Cybernetics, pp. 1–12, 2018.

[10] Leo Grady, “Random walks for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 28, no. 11, pp. 1768–1783, 2006.

[11] Leo Grady, “Multilabel random walker image segmen-
tation using prior models,” in Computer Vision and Pat-
tern Recognition. IEEE, 2005, vol. 1, pp. 763–770.

[12] Xingping Dong, Jianbing Shen, Ling Shao, and Luc
Van Gool, “Sub-markov random walk for image seg-
mentation,” IEEE Transactions on Image Processing,
vol. 25, no. 2, pp. 516–527, 2016.

[13] Craig A Laben and Bernard V Brower, “Process for en-
hancing the spatial resolution of multispectral imagery
using pan-sharpening,” 2000.

[14] R. K. Chung Fan, Spectral Graph theory, Published for
the Conference Board of the mathematical sciences by
the American Mathematical Society, 1997.

[15] Mahdi Khodadadzadeh, Jun Li, Saurabh Prasad, and
Antonio Plaza, “Fusion of hyperspectral and LiDAR
remote sensing data using multiple feature learning,”
IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, vol. 8, no. 6, pp. 2971–
2983, 2015.

2191


