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Abstract— Earth observation using multisensor data is draw-
ing increasing attention. Fusing remotely sensed hyperspectral
imagery and light detection and ranging (LiDAR) data helps to
increase application performance. In this article, joint classifica-
tion of hyperspectral imagery and LiDAR data is investigated
using an effective hierarchical random walk network (HRWN).
In the proposed HRWN, a dual-tunnel convolutional neural
network (CNN) architecture is first developed to capture spectral
and spatial features. A pixelwise affinity branch is proposed to
capture the relationships between classes with different elevation
information from LiDAR data and confirm the spatial contrast
of classification. Then in the designed hierarchical random walk
layer, the predicted distribution of dual-tunnel CNN serves as
global prior while pixelwise affinity reflects the local similarity
of pixel pairs, which enforce spatial consistency in the deeper
layers of networks. Finally, a classification map is obtained
by calculating the probability distribution. Experimental results
validated with three real multisensor remote sensing data demon-
strate that the proposed HRWN significantly outperforms other
state-of-the-art methods. For example, the two branches CNN
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classifier achieves an accuracy of 88.91% on the University of
Houston campus data set, while the proposed HRWN classifier
obtains an accuracy of 93.61%, resulting in an improvement of
approximately 5%.

Index Terms— Convolutional neural network (CNN), hyper-
spectral image (HSI), multisensor data fusion, hierarchical ran-
dom walk.

I. INTRODUCTION

REMOTELY SENSED hyperspectral imagery can
provide detailed spectral information for potential

material identification [1], [2]. Unlike the hyperspectral
image (HSI) data, light detection and ranging (LiDAR)
data provide elevation information about the area under
investigation, which can be acquired at any time of the
day and under adverse weather conditions [3]–[5]. Several
techniques fusing data collected from different sensors
have been investigated for better scene characterization
[6]–[11]. Joint classification of HSI and LiDAR further
improves the classification performance in remote sensing
[8], [12].

Numerous effective classification and machine learning
methods using HSI data have been developed [13]–[16].
Support vector machines (SVMs) [17] with nonlinear kernel
functions have been widely used, especially when the number
of training data is small. A simple classification method called
extreme learning machine (ELM) [18] has been introduced
with comparable performance to SVM. Deep learning-based
methods have attracted wide attention for their capabilities of
automatically extracting robust and high-level features, which
are known to be generally invariant to most local changes
of input [19], [20]. Specifically, convolution neural network
(CNN) has been extensively studied in remote sensing, and it
outperforms classical machine learning methods. For example,
a CNN-based pixel-pair feature framework [19] and a contex-
tual CNN [20] were recently proposed for HSI classification.
A convolutional recurrent neural network (CRNN) was pro-
posed to learn more discriminative features for hyperspectral
data classification [21]. A CNN architecture based on spectral–
spatial capsule networks (CapsNets) is proposed to achieve
accurate classification of HSI while significantly reducing the
network design complexity [22]. Residual network (ResNet)
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Fig. 1. Proposed feature extraction and classification framework of HRWN. In the random walk layer, ellipse nodes denote the graph nodes, and circle nodes
are auxiliary nodes. Green nodes are unseeded nodes, blue nodes are prior distribution, and other color nodes are seeds. Only part of the transition edges are
shown for simplification.

[23] and extended model based on pyramidal bottleneck resid-
ual units (Pyramidal ResNet) [24] enable feature reuse. Dense
convolutional networks (DenseNets) [25] enable new feature
exploration. Both are important for extracting discriminative
features of HSI. A dual-path network method was proposed
to combine ResNet and DenseNet so as to reuse the previous
features by skipping connections between adjacent layers, and
explore new features containing more details by connecting
each layer to other layers in a feedforward fashion [26].

With the increased availability of HSI and LiDAR data sets
of the same area, studies have indicated that classification per-
formance can be improved by fusing HSI and LiDAR data [8],
[12]. In [9], morphological extinction-profiles were exploited
for joint feature extraction of both HSI and LiDAR-based
DSM. In [27], topological information and morphological
operations were included in the classification task. However,
simple concatenation or stacking of features may be limited
in individual feature extraction [28]. In particular, to solve the
problem caused by an unbalance between different features,
decision-fusion methods for HSI and LiDAR classification
have been presented [10], [11]. CNN-based methods combined
HSI and LiDAR-based DSM using multibranch architecture
[29] or end-to-end hierarchical fusion module [30] for efficient
classification. Although these features and decision-fusion-
based approaches have shown excellent performance for clas-
sification tasks, the large receptive fields in the convolutional
layers and the presence of pooling layers lead to low spatial
resolution in the deeper CNN layers [31]. Thus, the corre-
sponding predicted classes tend to be spatially fragmented and
lack fine object boundary details.

To address spatial continuity, Markov random field (MRF)
was integrated into the HSI classification framework as a post-
processing step [32], [33]. However, these models typically
involve a large number of parameters and complex loss func-
tions requiring specialized model training. In [35] and [36],
MRF or conditional random field (CRF) was integrated into
CNN by employing graphs with a fixed grid structure, which
made training and testing inflexible and complicated. Thus,
simple but flexible random walk methods were introduced for
the efficiency of the focusing task [36]–[39]. It was originally

developed for image segmentation and has been successfully
applied in HSI classification [40]–[42].

In this article, focusing on the weak boundary and spa-
tially fragmented classification issue, a simple yet effective
hierarchical random walk network (HRWN) is proposed. The
proposed HRWN jointly optimizes dual-tunnel CNN and
pixelwise affinity via a novel random walk layer, which
enforces spatial consistency in the deeper layers of the net-
work. Because the LiDAR-based DSM (digital surface model)
possesses clear boundaries between objects with different
elevations and homogeneous regions inside real objects with
the same elevations, a pixel affinity branch using LiDAR-
based DSM is employed to capture the relationships between
classes with different elevation information and confirm spatial
contrast. Then, in the hierarchical random walk layer, the pre-
dicted distribution of dual-tunnel CNN serves as a global
a priori while the affinity of pixels reflects the local similarity
and spatial contrast of pixel pairs. Finally, the classification
map is obtained by computing the probability distribution
of each pixel to be classified. Experimental results with real
remote sensing data sets demonstrate the effectiveness of the
proposed method.

The main contributions are summarized as follows.

1) A hierarchical random walk layer exploits spatial con-
straint and local seed guidance into the deeper layer of
CNN. The random walk layer alleviates the problems of
weak localization around boundaries and spatial frag-
mentation of the classification map.

2) Considering detailed spectral signatures of HSI and
elevation information of LiDAR, the proposed dual-
tunnel CNN can utilize complementary features and
analyze the joint features from the fused data spatially
and spectrally.

3) For spatial consistency and contrast of LiDAR-based
DSM, a new pixel affinity matrix is defined, which
captures the elevation similarity and confirms the spatial
contrast between classes.

The remainder of this article is organized as follows. The
proposed framework is introduced in Section II. In Section III,
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experimental results and analysis are presented. Finally,
Section IV summarizes with some concluding remarks.

II. PROPOSED CLASSIFICATION FRAMEWORK

The HRWN framework is designed to classify pixels by
fusing multisource remote sensing images in both feature
extraction and decision prediction aspects. First of all, the ran-
dom walk process is integrated into the deep architecture to
encourage coherent classification among pixels that are similar
to each other. By doing so, poor localization around boundaries
and spatial fragmented classification problems are alleviated.
The framework of the proposed HRWN is illustrated in Fig. 1,
which consists of three parts: 1) a dual-tunnel CNN branch that
exploits classification potentials (part I); 2) the other pixel-
level affinity branch that captures local similarities (part II);
and 3) a novel random walk layer that merges the two branches
to obtain classification map (part III).

A. Prior Distribution Prediction by Dual-Tunnel CNN

As illustrated in Fig. 1, part I reflects dual-tunnel CNN
branch, which is elaborated on more details in Fig. 2. For the
input of the dual-tunnel CNN branch, both spectral and spatial
features are needed, but the original HSI images are limited
for low spatial resolution and cloud interference. Therefore,
the HSI and LiDAR-based DSM images with geographical
registration are first fused to combine the advantages of both.
Classical multisensor information fusion methods include
color normalized transformation, principal component spec-
tral sharpening, and Gramm–Schmidt methods. Specifically,
Gramm–Schmidt method is used for the fusion of HSI and
LiDAR-based DSM after geographical registration [43]. Then,
a novel dual-tunnel CNN is designed for the fused image H,
which consists of a spectral tunnel and a spatial tunnel.

For the spatial tunnel, the input is a patch centered at
the pixel pi j with a radius r . The fused data patch Hspa

i j ∈
R

ksize×ksize(ksize = 2 × r + 1) is fed into the 2-D CNN tunnel,
which includes simple operations such as 2-D convolution,
activation, max-pooling, and batch normalization layers [44],
[45]. The spatial feature Fspa

i j around the central target pixel pi j

is first extracted by the 2-D convolution and batch normaliza-
tion operations. The convolution operations are executed with
valid padding, and the value of convolution stride stride is set
to 2, then the range of samples is [(Width ∗ Height)/stride2],
where i = 1, . . . , Width/stride, j = 1, . . . , Height/stride,
Width and Height are the size of the original image. Each
convolution process involves certain operations, including 2-D
CNN (conv2D) and batch normalization. The kernel size of the
convolutional layer shown in Fig. 2 is set to 3 × 3 and then
1 × 1 for detailed spatial information while the number of
filters changes from 100 to 200. The activation function is a
rectified linear unit (ReLu) while dropout is used to prevent
overfitting. Since the dimensionality of feature maps from the
last layer is different from that of the spectral tunnel, the output
spatial features Fspa

i j are vectorized as a D-dimensional vector
by the fully connected layer.

For the spectral tunnel, it concentrates on the center pixel
Hspe

i j and consists of simple 1-D operations including con-
volution, activation, max-pooling, and batch normalization.

Fig. 2. Overall parameter configuration of the designed dual-tunnel CNN
branch.

1-D CNN (conv1D) is applied to extract spectral features,
where the value of convolution stride stride is set to 2
for sufficient training samples. Filter length of convolutional
layers shown in Fig. 2 are set to 11 and 3 while the number
of filters changes from 64 to 128 for detailed spectral feature
extraction. The output spectral feature Fspe

i j is also vectorized
as a D-dimensional vector by a fully connected layer after the
max-pooling layer. Then the spatial and spectral features are
concatenated as

FM = f
(
W · (Fspe

i j ‖ Fspa
i j

) + b
)

(1)

where W and b are the weight and bias of the fully connected
layer, respectively, and ‖ means concatenating the spectral and
spatial features.

Then the joint spatial–spectral feature FM is fed into the
softmax classify layer to predict the probability distribution

pk
i = exp(θk |FM)∑K

k=1 exp(θk |FM)
(2)

where K is the number of classes and k indicates the kth class,
i is the index of pixel, and θk is the kth column of the weights
in the prediction layer. The probability distribution indicated
by pk

i is used as prior distribution in the hierarchical random
walk layer (part III).

B. Spatial Similarity by Pixel-Level Affinity Branch

The dual-tunnel CNN utilizes both spatial and spectral
information, but the large receptive fields in the convolutional
layers and the presence of pooling layers lead to low spatial
resolution in the deeper CNN layers. To capture the rela-
tionship between classes with different elevation information
and confirm spatial contrast, a pixel-level affinity branch is
employed with its own learning objective as part II in Fig. 1.

This branch is connected with the LiDAR-based DSM
image with N pixels. The input image is modeled as a
weighted, undirected, and connected graph G = {V , E}, where
V is a finite set of vertices with |V | = N and E is a set of
edges. Then Eu is a sparse N × N matrix storing Euclidean
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distance between each pixel and all its neighbors

Eu(i, j) = ||DSM(i) − DSM( j)||2 (3)

where i = 1, . . . , N and j = 1, . . . , N with N being the
number of pixels. The resulting Eu is used as an input feature
of the affinity branch, as shown in Fig. 1. Note that Eu is a
sparse matrix, as only a small fraction of all the entries are
populated with nonzero values.

Then the Euclidean distance layer is optimized to predict
the pixel similarity matrix W, where a weight wi j ∈ W of
edge ei j measures the probability that a random walker will
cross this edge. As many other algorithms based on graph
expressed, a weight wi j is formulated as

wi j = exp

(
−Eu(i, j)2

σ

)
+ ε (4)

where Eu(i, j) is the Euclidean distance between two nodes
vi and v j , σ is the controlling parameter and ε is a small
constant. The nonnormalized graph Laplacian is defined as
L := D − W, where D is the diagonal degree matrix with
the nth element dn = ∑

m �=n Wmn being the degree of vertex
n. Finally, normalization is applied to predict the ground-truth
pixel affinities by matrix operation A = D−1W, which can be
expressed as

Ai j =
{

wi j/di , if i ∼ j

0, otherwise.
(5)

The pixel affinities matrix A is used as a spatial constraint in
the hierarchical random walk layer (part III) to build up an
extended graph.

C. Hierarchical Random Walk Classification

To integrate the dual-tunnel CNN prediction and pixel affini-
ties, a hierarchical random walk layer (part III) is designed,
as shown in Fig. 1. The hierarchical random walk layer is
connected to the two branches, including: 1) prior distribution
pk

i ∈ P obtained by dual-tunnel CNN as a global guide and
2) affinity matrix A reflecting pixel similarity for adjoint and
seeds map sk

i ∈ S for the local guide.
With the prior information, a graph with priori Ge is

constructed. Assume a random walker starts at each unlabeled
pixel, the probabilities rk

i is computed such that random
walkers first reach the labeled pixels. For the standard random
walker, the probability rk

i can be computed by minimizing the
energy function

Ek
spatial

(
rk

) = (
rk

)T
Lrk . (6)

The analytical solution of the energy function can be computed
by solving a system of linear equations [36].

However, the random walker layer will not work if S is
empty. To incorporate global prior distribution and local prior

Algorithm 1 HRWN Model
Require: Fused image H, LiDAR-based DSM DSM, training

seeds S, training epochs epochs.
Ensure: Classification map R.
1: Initialize all weights
2: Step1: Prior Distribution Prediction
3: for epoch < epochs do
4: Extract spatial features Hspa

i j and spectral feature Hspe
i j

from the fused image H.
5: Train the Dual-tunnel CNN shown in Fig. 2
6: Obtain probability distribution pk

i by Eq. (2).
7: end for
8: Step2: Pixel-Level Affinity
9: Build graph G from LiDAR-based DSM image DSM.

10: Compute weight matrix W using Euclidean distance Eu
and compute pixel affinity matrix A by Eq. (5).

11: Step3: Hierarchical Random Walk
12: Compute the transition probability matrix Q and the reach-

ing probability rk
i by Eq. (9) and Eq. (10).

13: Optimize random walk path and obtain classification map
R by Eq. (11).

information, another nonspatial energy function is given as

Ek
non−spatial

(
rk

)
= Ek

seed

(
rk

) + Ek
prior

(
rk

)
= (

rk − sk
)T

C
(
rk − sk

) + · · · + (
rk − I

)T
Pk

(
rk − I

)
+

N∑
q=1,q �=k

(
rq

)T
Pqrq (7)

where Pk is a diagonal matrix representing the prior proba-
bility with the i th element pk

i being the probability for pixel
vi , sk is the seed matrix, and C is the weight matrix con-
trolling the trade-off of seeds. As (7) indicated, three parts of
energy constitute the nonspatial energy. (rk − sk)

T C(rk − sk)
is considered as the energy of random walker reaching the
training seeds, and mininizing this term can gather nodes
to the seed nodes in their class. (rk − I)T Pk(rk − I) and∑N

q=1,q �=k (rq)T Pqrq , respectively, indicate reaching probabil-
ities to nodes in the prior distribution of current class labels
and labels for other classes.

Thus, the spatial and nonspatial energy functions are com-
bined as

Ek
(
rk

) = Ek
spatial

(
rk

) + λEk
non−spatial

(
rk

)
(8)

where λ is the weight number controlling the tradeoff of
spatial and nonspatial energy. Each prior distribution node
is connected with all nodes in V , and the weight of an
edge between a prior node hk and node vi is proportional
to probability pk

i .
Then, in the designed hierarchical random walk layer,

the transition probability matrix Q on V ∪ � ∪ S ∪ P is
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Fig. 3. Part of HSI and LiDAR-based DSM data with their fused image for
joint feature extraction. (a) HSI. (b) LiDAR-based DSM. (c) Fused image.

formulated as

Q(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c, ifi ∈ V, j ∈ S
λpk

i

di + λgi
, ifi ∈ V, j ∈ P

wi j

di + λgi
, if j ∼ i ∈ V

1, ifi = j ∈ {�} ∪ S ∪ P

0, otherwise

(9)

where gi = ∑K
k=1 pk

i , λ is the weight parameter of prior
distribution, c is the weight parameter of seeds, and � is the
set of unlabeled pixels.

Given the transition probability Q on a graph with prior,
the reaching probability rk

i that a random walker from a node
vi ∈ V reaching seed sk

i or prior node pk
i is formulated as

rk
i =

∑
j∼i∈V

wi jr k
j

di + λgi
+ λpk

i

di + λgi
+ csk

i (10)

where the weight parameter λ and c balance two effects: 1)
propagating the classification information across the nodes
using random walk transition matrix and 2) not deviating too
much from the initial classification.

Then the final labeling result can be obtained as

R(i) = arg max
k

r k
i (11)

where R is the final label that generates the greatest probabil-
ity. With some deduction, the solution of (11) is equivalent to
the optimal solution of minimizing objective function in (8).
These algorithm steps are shown in Algorithm 1.

D. Motivation of the Proposed HRWN

For the joint classification of multisensor data, the detailed
spectral signatures of ground covers using HSI and elevation
information of the same area using LiDAR-based DSM need
to be extracted jointly. Taking the HSI and LiDAR-based DSM
data sets in Table I as an example, the motivations of each step
are analyzed as follows. In the proposed dual-tunnel CNN,
the joint utilization of 2-D and 1-D CNN integrates spatial
and spectral information. Due to the high spectral resolution,
narrow bandwidth and a large amount of information, HSI
can be used to distinguish and detect ground targets with
powerful diagnostic ability. However, as shown in Fig. 3(a), its
poor spatial contrast between objects limits its performance in
spatial feature presentation. The LiDAR-based DSM shown

Fig. 4. Spatial comparison of pixel similarity with boundary region
specifically. (a) HSI. (b) LiDAR-based DSM. (Detailed specifications of the
HSI and LiDAR-based DSM are depicted in Table I.)

Fig. 5. Classification maps comparing the usefulness of hierarchical random
walk. (a) Ground truth. (b) Dual-tunnel CNN classification. (c) Improved
classification by hierarchical random walk.

in Fig. 3(b) provides more accurate elevation information
and useful spatial contrast. Thus, fusing HSI and LiDAR-
based DSM is helpful to synthesize diverse information on
the investigated areas. However, as shown in the top right
corner of Fig. 3(c), the occluded part still has no obvious
contrast in the fused image. Thus, the pixel affinity branch
is further developed using LiDAR-based DSM to confirm the
spatial contrast between classes with different elevations.

The reason to choose LiDAR-based DSM rather than
HSI or the fused image for pixel affinity is that LiDAR-based
DSM possesses clearer boundary regions and homogeneous
regions inside the real objects as shown in Fig. 4. With the ele-
vation information of LiDAR-based DSM, objects composed
of the same material but different elevations are distinguishable
locally, such as highway, roofs, and roads. Even for the
occluded part on the top right corner, the local pixel similarity
is extracted accurately because LiDAR works well in all light
conditions. In the proposed classification framework, adjacent
pixels are most likely to own the same label. This spatial
smooth prior defined in (4) encourages neighboring pixels to
be assigned with the same labels. The pairwise interaction
terms obtain a small distance when neighboring pixels are
similar. In this way, this smoothness prior can reinforce piece-
wise smooth classification in homogeneous regions. On the
contrary, obvious dissimilarity is encouraged with a larger w
in the boundary regions. The exploitation of this intuitive prior
distribution of LiDAR-based DSM with proper characteristics
tends to dramatically improve classification accuracy.
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TABLE I

HSI AND LIDAR-BASED DSM DATA SETS USED FOR EVALUATION

The probability maps estimated by the dual-tunnel CNN
are usually noisy and not aligned with real boundaries of
objects, which leads to low classification accuracy as shown
in Fig. 5(b) (the MUUFL Gulfport data set used in Fig. 5
for illustration will be introduced in Section III-A). This is
because of piecewise spatial constraint and pixel similarity
are not considered. With the pixel affinity branch confirm-
ing spatial contrast using only LiDAR-based DSM image,
the classifier performance on classes with similar elevations
is degraded. To combine the advantages of spatial–spectral
and elevation information, a hierarchical random walk layer
is designed to integrate the dual-tunnel CNN prediction and
pixel affinities. As shown in Fig. 5(c), this layer not only
improves classification accuracy in homogeneous regions but
also ensures that real object boundaries are well aligned with
the probability map.

III. EXPERIMENTS AND ANALYSIS

In this section, three multisensor remote sensing data sets
are used to validate the effectiveness of the proposed method.
All the programs are implemented using Python 3.6 and
MATLAB R2018a [47], and the networks are constructed
using Tensorflow1 with the high-level API Keras.2 Tensorflow
is an open-source software library for numerical computation
using data flow graphs, and Keras can be seen as a simplified
interface to Tensorflow. All experiments are conducted using
a personal computer equipped with Windows 7 and NVIDIA
Quadro K2200.

A. Experimental Data

To evaluate the performance of the proposed HRWN, three
multisensor data sets are tested for quantitative and qualitative
evaluation. The first scene was acquired by the NSF-funded
Center in June 2012 over the University of Houston campus
and neighboring areas [28]. The data set is composed of
HSI and LiDAR-based DSM with detailed information shown
in Table I. Available training and testing samples are listed
in Table II. The second scene was acquired over a rural
area in the south of the city of Trento, Italy, with detailed
information depicted in Table I [8]. Table IV lists the available
training and testing samples. The third scene was collected on
November 8, 2010, over the University of Southern Mississippi

1http://tensorflow.org/
2https://github.com/fchollet/keras

Fig. 6. Influence of the parameters on classification accuracies of the
proposed HRWN with different parameters, i.e., λ and σ . (a) Houston.
(b) Trento. (c) MUUFL.

Gulfport Campus [46]. Detailed data descriptions can be found
in Table I. Table VI lists the available training and testing
samples.

B. Parameter Tuning

The classification performance is closely related to the
designed architecture of the deep network. In order to validate
the proposed HRWN, the classification results using different
weight parameters and patch sizes are compared.

1) Weight Parameter Comparison: For the proposed
HRWN, (4) and (10) can be used to calculate the parameters
λ and σ . In order to validate the effects of weights between
different layers, classification tasks are tested using different
weights between prior distribution, pixel affinity and seed map.
The Kappa coefficient (Kappa) of the proposed method as the
two varying parameters is shown in Fig. 6. It is indicated that
when σ is lower than 10−1, Kappa of the proposed method
may decrease significantly, because the value of the weighted
graph is too large when σ is quite small. In this case, λ needs to
be a relatively large value to ensure the balance between spatial
and nonspatial information of the energy function. Similarly,
if the value of λ is large, the resulting classification map looks
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Fig. 7. Classification performance of the proposed HRWN with different
patch scales.

Fig. 8. Structure of the spatial-tunnel of HRWN (ksize denotes the size of
neighbor patches).

relatively similar to that produced by the dual-tunnel CNN.
When λ is too small, an overfitting issue may occur.

2) Multiscale Comparison: The effect of several different
sizes of the neighbor patch is further studied. The performance
on different window sizes of 7 × 7, 11 × 11, and 15 × 15
is demonstrated in Fig. 7. The experimental results indicate
that features extracted by various patch sizes yield different
classification performance. The experimental results indicate
that features extracted by various patch sizes yield different
classification performance. The parameter fitting on training
and validation samples during the training process is shown
in Fig. 8. The experimental results indicate that the patch size
influences the classification performance. Fig. 7 shows that the
optimal patch size is 11 × 11. It also shows that the result for
13×13 is worse than for 9×9, which is because a larger patch
containing more classes in one patch is difficult to classify.

3) Learning Rate Comparison: The learning rate controls
the step of gradient descent in the training process, and is one

Fig. 9. Classification performance of the proposed HRWN with different
learning rates.

of the factors determining the convergence rate. The parameter
is set with an initial value according to Adam [48]. In the
training process of HRWN, different learning rates are tested,
and the corresponding spatial–spectral features are utilized.
Based on our empirical study, classification performance may
not be improved with a higher learning rate. As listed in Fig. 9,
the best learning rate is 0.0001 for all the three experimental
data sets. Since the Trento data set contains fewer classes and
more uniform regions, it results in relatively higher classi-
fication accuracy, which relatively improves with increasing
learning rates.

C. Classification Performance and Analysis

To validate the effectiveness, the proposed HRWN is com-
pared with several other classifiers, such as the standard SVM
[17], ELM [18], recently proposed CNN-PPF [19], two-branch
CNN [29], context CNN [20], CRNN [21], and CNN-MRF
[35]. Note that SVM is implemented using the LIBSVM
toolbox,3 and trained using a Gaussian radial basis function
(with gamma = 0.5). We optimized the parameters of all
the methods used in the comparison. Furthermore, several
classification frameworks including SVM, ELM, CNN-PPF,
two-branch CNN, two-branch CNN(Merge), context CNN,
CRNN, and CNN-MRF, are discussed. In two-branch CNN
(Merge), the input of two-branch CNN [29] is changed to the
fused data. Besides, for a fair comparison, all the training and
testing samples are exactly the same. In the data preprocessing
procedure of the proposed HRWN and other competitive
classifiers [21], [29], data augmentation is used to increase
the diversity of training samples, improve the robustness of the
model, and avoid overfitting. The used augmentation method
applies orientation flipping, injection of noise randomly to
the data, which reduces the model’s dependence on certain
attributes and thereby improving the generalization perfor-
mance.

Tables II, IV and VI list the overall accuracy (OA),
average accuracy (AA), and Kappa coefficient (Kappa) for
three experimental data sets. The proposed HRWN performs

3http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Fig. 10. Classification maps for the Houston data obtained with different methods. (a) Pseudocolor image for HSI. (b) LiDAR-based DSM. (c) Ground-truth
map. (d) SVM (80.49%). (e) ELM (81.92%). (f) CNN-PPF (83.33%). (g) Two-Branch CNN (88.91%). (h) Context CNN (86.90%). (i) CNN-MRF (90.61%).
(j) CRNN (88.55%). (k) HRWN (93.61%).

TABLE II

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE HOUSTON DATA

obviously better than other methods. Taking the Houston data,
for example, the Kappa of the proposed HRWN is 93.09%,
which is the best among all the classifiers. Due to the more
robust extraction of global and local features, the hierarchical
model for HSI, LiDAR-based DSM, and fused data can pro-
vide significant improvement. One of the main challenges in
classification is the problem of misclassification. Specifically,
it is common to misclassify soil as shrub or grass as crops
in natural settings. In order to evaluate the proposed HRWN
in terms of misclassification, the confusion matrices for three
data sets are shown in Tables III, V and VII. The conditional
Kappa (with 5% confidence interval) for the classes are listed
as a reliable indicator of classwise accuracy. The conditional
Kappa is a statistic that is used to measure interrater reliability
for qualitative items. The HSI data should not be used to
differentiate targets consisting of the same material such as

road and highway in Houston data, grass and ground in
MUUFL data. However, the efficient usage of LiDAR-based
DSM enables the proposed HRWN to distinguish objects with
different elevations as shown in Tables III, V and VII. On the
other hand, the spatial–spectral information obtained by the
dual-tunnel CNN branch can enable the classifier to distinguish
targets with similar elevations. Also, the pixel affinity branch
using only LiDAR-based DSM may degrade the performance.
Thus, the trade-off between spectral–spatial similarity and
elevation contrast affected by λ is demonstrated in Fig. 6.

For qualitative evaluation of the classification performance,
visual maps are illustrated in Figs. 10–12. Also, the ground-
truth map and pseudocolor maps of entire image scenes are
provided for clarity. The proposed method produces the most
accurate classification maps. The use of a hierarchical random
walk layer enables the proposed HRWN method to produce
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TABLE III

CONFUSION MATRIX OF THE HOUSTON DATA CLASSIFICATION

Fig. 11. Classification maps for the Trento data obtained with different methods including (a) Pseudocolor image for HSI, (b) LiDAR-based DSM, (c) ground-
truth map, (d) SVM (92.77%), (e) ELM (91.32%), (f) CNN-PPF (94.76%), (g) two-branch CNN (97.92%), (h) context CNN (96.11%), (i) CNN-MRF(98.40%),
(j) CRNN (97.22%), and (k) HRWN (98.86%).

spatially smooth results with less false boundaries. It can be
concluded that the visual results are consistent with those
in Tables II, IV and VI.

For the sensitivity of the training-samples size, classification
results with different numbers of training samples are shown
in Fig. 13. The percentage of training samples varies from 20%
to 100% (100% percentage means using all the training sam-
ples of original data sets listed in Tables II, IV and VI). As for
various percentages, training samples are selected randomly
and averaged results are reported. Obviously, the proposed
method consistently outperforms other classifiers. Note that
even for a small training data size, such as 20% of the

training data, the proposed network still provides excellent
classification performance. In Fig. 13(c), the Kappa of the
proposed HRWN is approximately 85%, whereas those of
other methods are all below 75%. This obvious improvement
gap verifies the effectiveness of the HRWN method.

To test the applicability of HRWN for medium or low-
resolution data, the experimental data sets used are resampled
to lower resolution. To test HRWN with respect to the quality
of the input data, a Gaussian downsampling operation is
applied to decrease the spatial resolution of both the HSI and
LiDAR-based DSM. Then, the data set is simply interpolated
to match the size of the original ones. For the sensitivity of all
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TABLE IV

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE TRENTO DATA

TABLE V

CONFUSION MATRIX OF THE TRENTO DATA CLASSIFICATION

Fig. 12. Classification maps for the MUUFL Gulfport data obtained with different methods including (a) pseudocolor image for HSI, (b) LiDAR-based
DSM, (c) ground truth map, (d) SVM (82.74%), (e) ELM (80.41%), (f) CNN-PPF (90.97%), (g) two-branch CNN (90.35%), (h) context CNN (86.07%), (i)
CNN-MRF(88.94%), (j) CRNN (91.38%), and (k) HRWN (94.31%).

the methods to the spatial resolutions of data sets, classification
performance with different resolutions of data sets are listed
in Fig. 14. The resampled scales of HSI and LiDAR-based
DSM are changed from 0.2 to 1 (1 means using the original
data sets listed in Table I). From Fig. 14, the performance of all

the methods is affected by resolution changes, and the HRWN
consistently outperforms other classifiers. Note that even for
the low-resolution data, the proposed network still provides
better classification performance. In Fig. 14(a), the Kappa of
the proposed HRWN performs approximately 3% better than
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TABLE VI

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE MUUFL GULFPORT DATA

TABLE VII

CONFUSION MATRIX OF THE MUUFL GULFPORT DATA CLASSIFICATION

Fig. 13. Classification performance with different sizes of training samples using (a) Houston, (b) Trento, and (c) MUUFL.

other classifiers. This discussion shows the effectiveness of the
HRWN method for medium resolution.

Actual HSI data inevitably contain considerable noise.
To deal with feature noise and label noise, several noise-
robust approaches have been proposed [49]–[51]. To test the
applicability of HRWN for noisy data, Gaussian white noise
with different degrees of zero mean is added to the fused data
during simulation. It is assumed that the effect of noise on the
density map satisfies the following model:

E ′ = E(1 + σ G) (12)

where E and E ′ are, respectively, the original and noisy HSI
and LiDAR-based DSM data sets, the parameter σ is the
noise weight, G denotes Gaussian white noise. Fig. 15 shows
the noise sensitivity of the classification performance of all
methods. σ varies from 0.1 to 0.7 (ori means using the original
data sets listed in Table I). Fig. 15 shows that the performance
of HRWN is affected by the noise level. The proposed HRWN
may classify real objects into neighbor regions embedded in
noise. The hierarchical random walk may aggravate this effect
and further lower the accuracy. Though the HRWN method is
still effective under noisy conditions, its performance is not
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Fig. 14. Classification performance with different resolutions of data sets using (a) Houston, (b) Trento, and (c) MUUFL.

Fig. 15. Classification performance under different noise level using (a) Houston, (b) Trento, and (c) MUUFL.

robust in the presence of considerable noise, which means
further efforts are needed to improve its robustness.

To demonstrate the statistical significance of improved
performance, the standardized McNemar’s test [52], [53] is
employed, and the multiclassifier z-test results are listed
in Table VIII. The Z values of McNemar’s test larger than
1.96 and 2.58 mean that two results are statistically different
at the 95% and 99% confidence levels, respectively. The
sign of Z indicates whether classifier 1 outperforms classifier
2 (Z > 0) or vice versa. In the experiment, we run the
comparison between HRWN and other classifiers. As shown
in Table VIII, all the values larger than 2.58 mean that the
HRWN classifier outperforms other classifiers with a 99%
confidence level. The standardized McNemar’s test confirms
that the proposed HRWN is highly discriminative.

Table IX summarizes the training and testing computational
cost of the proposed method. All the experiments of compu-
tational time are implemented in the same configuration of
hardware and software. The training process takes longer, and
the test of the whole scene is relatively faster. The HRWN
is not time-consuming because the iteration epochs for the
HRWN are less than the competitive deep learning methods.
The prior probability maps estimated by the dual-tunnel CNN
using fewer epochs are usually noisy and not aligned with real
boundaries of objects, which are improved by the hierarchical
random walk layer.

D. Ablation Studies

In addition, we investigate and analyze the performance
improvement of our HRWN method by comparing using

TABLE VIII

STATISTICAL SIGNIFICANCE FROM THE STANDARDIZED MCNEMAR’S

TEST ABOUT THE DIFFERENCE BETWEEN METHODS

different components, since the HRWN is involved with mul-
tiple steps, that is, data augmentations in preprocessing and
hierarchical random layer. Successively implementing these
steps of the proposed HRWN leads to a higher classification
result for the HSI and LiDAR-based DSM. This also indicates
the reasonableness and advancement of the proposed HRWN
classification framework.

1) With/Without Hierarchical Random Walk Comparison:
The hierarchical random walk layer plays a crucial role in
achieving better classification performance. Considering the

Authorized licensed use limited to: University of Gent. Downloaded on May 19,2021 at 10:31:27 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: JOINT CLASSIFICATION OF HYPERSPECTRAL AND LiDAR DATA USING HIERARCHICAL RANDOM WALK AND DEEP CNN ARCHITECTURE 7367

Fig. 16. Influence of with/without hierarchical random walk layer on classification accuracies of HRWN. (a) Houston. (b) Trento. (c) MUUFL.

Fig. 17. Influence of with/without data augmentations on classification accuracies of HRWN. (a) Houston. (b) Trento. (c) MUUFL.

TABLE IX

ELAPSED TIME (h: HOURS, s: SECOND) OF TRAINING AND TESTING TIME

FOR THE PROPOSED METHOD USING THE EXPERIMENTAL DATA SETS

experimental analysis of a random walk layer, the dual-tunnel
CNN branch is trained first, and the random walk strategy is
adopted based on the pretrained layers. Fig. 16 illustrates the
classification performance with and without the hierarchical
random walk layer. It is observed that the random walk layer
achieves better performance than that without a random walk
for most of the classes. However, for some classes with spatial
dispersion and small areas, the hierarchical random walk may
misclassify them into large neighboring areas. In addition,
because the random walk layer combines the LiDAR-based

Fig. 18. Classification maps obtained by HRWN with/without data aug-
mentations. (a) Houston data set without data augmentations (OA = 91.56%
and Kappa = 90.88%). (b) Houston data set with data augmentations (OA =
93.61% and Kappa = 93.09%). (c) Trento data set without data augmentations
(OA = 98.19% and Kappa = 97.59%). (d) Trento data set with data
augmentations (OA = 98.86% and Kappa = 98.48%). (e) MUUFL data
set without data augmentations (OA = 93.11% and Kappa = 90.96%).
(f) MUUFL data set without data augmentations (OA = 94.31% and Kappa
= 92.52%).

DSM information, the performance of the classifier in classes
with similar elevations may be degraded. For example, ground
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class in the Trento data set may be misclassified as roads,
building shadows and yellow curb classes in the MUUFL
data set are more likely to be classified as adjacent areas.
However, the random walk layer can effectively improve the
classification performance in general.

2) With/Without Data Augmentations: In the data pre-
processing procedure of the proposed HRWN and other com-
petitive classifiers, data augmentation is used to increase the
diversity of training samples, improve the robustness of the
model, and avoid overfitting. To validate the improvement
of performance by data augmentation, both augmented and
not augmented results are provided in Fig. 17. Classifica-
tion accuracy is reduced when disabling data augmentation
because of the insufficient training. From the training aspect,
data augmentation is useful for increasing the diversity of
training samples, improve the robustness of the model. Take
the training and evaluating of the University of Houston
data set as an example, the used augmentation method
applies orientation flipping, injection of noise randomly to
the data, which reduces the model’s dependence on certain
attributes and thereby improving the generalization perfor-
mance. From the quantitative and qualitative comparisons
in Fig. 18, using data augmentation is useful for suffi-
cient training and offers a 1% − 2% improvement in the
Kappa coefficient.

IV. CONCLUSION

In this article, an HRWN was proposed to explore deep
features for the joint classification of HSI and LiDAR-based
DSM, which effectively mitigated the issue of boundary local-
ization and spatial inconsistency. The proposed HRWN jointly
optimized dual-tunnel CNN and pixelwise affinity via a novel
random walk layer, which enforced spatial consistency in the
deeper layers of the network. Experimental results validated
with real multisensor remote sensing data sets demonstrated
that the proposed method can significantly outperform other
state-of-the-art methods. Compared with other joint classifi-
cation methods, the major advantage of the proposed method
is that it combines spectral–spatial classification, graph-based
elevation feature and hierarchical random walk in a joint learn-
ing framework. With the proposed framework, the problems of
weak localization around boundaries and spatial fragmentation
of the classification map are reduced. As a result, the proposed
HRWN is able to obtain a satisfactory classification accuracy.
However, the proposed method still has some of the com-
mon limitations of HSI classification methods. For example,
the performance declines sharply on a noisy data set. As actual
HSI data inevitably contain considerable noise, preprocessing
is needed to improve the robustness of the proposed HRWN.
Furthermore, extending the proposed HRWN for large-scene
HSIs and LiDAR-based DSMs (with higher spatial resolution)
also requires more research. Lastly, lowering the computa-
tional burden of the proposed HRWN can further promote its
practical application. Our code and all the results are available
at https://github.com/xudongzhao461/HRWN.
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