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Hierarchical-Biased Random Walk for Urban Remote
Sensing Image Segmentation

Xudong Zhao
and Wei Li

Abstract—Random walk (RW) technique, with benefit of han-
dling complicated boundaries, has recently drawn increasing
attention in image segmentation. In this paper, RW is employed
for urban remote sensing image segmentation. To deal with the
complex spatial distribution with heterogeneous structures, a
novel hierarchical-biased RW (HBRW) method is proposed.
Firstly, edge regions extracted by fractional differential are
combined with histograms to obtain plentiful features. Then,
Dirichlet process mixture model is used to generate hierarchical
global prior distribution and local seeds, which substitute manual
scribbles. Moreover, the proposed model can adapt to different
resolution segmentation tasks through adjusting the concentration
parameter. Final segmentation output is obtained by biased RW.
Experimental results on urban high-resolution remote sensing
images demonstrate that the proposed algorithm achieves better
performance than other state-of-the-art algorithms.

Index Terms—Dirichlet process mixture model (DPMM), frac-
tional differential, hierarchical-biased random walk (HBRW),
urban remote sensing image segmentation.

I. INTRODUCTION

EGMENTATION is a typical and crucial step in automatic
S understanding and interpretations of urban remote sensing
image. This task keeps challenging due to some heterogeneous
appearance in high-resolution data, i.e., objects like buildings,
streets, trees, and cars [11], [19], [26], [30]. During the past
decades, many segmentation methods have been investigated.
The classical segmentation methods include clustering [8], total
variation [29], probabilistic [17], and thresholding [28] tech-
niques. These standard methods simply use the amplitude value
of pixels to produce the segmentation results without consid-
ering the characteristics of the remote sensing images. To im-
prove the performance, graph-cut [9], normalized-cut [24], and
random walk (RW) methods [13] were subsequently proposed
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for segmentation. These graph-based methods attracts atten-
tion because of their solid mathematical foundation and capa-
bility of utilizing global and local spatial information during
segmentation.

One of the typical graph-based segmentation methods, i.e.,
RW, has been widely used for different tasks in image segmen-
tation [12], [13], [15], [25]. The RW model was first proposed by
Grady and Funka-Lea [14] for medical image segmentation and
then extended to natural images [13]. And then, many signifi-
cant methods based on RW have been proposed [6], [12], [16],
[25]. In the RW setting, the user marks some pixels in the image,
then assumes that the random walker starts with each unlabeled
pixel and calculates the probability that the random walker first
arrives at the already tagged pixels. At each pixel, the tag with
the maximum probability is selected as the final tag to obtain
the final segmentation results.

To deal with the complex texture, the random walker with
restarting (RWR) was introduced [18]. The RWR introduces
restarting probability ¢, and the random walker would return to
the starting node (pixel) with the probability of ¢ or out to an
adjacent pixel at the probability of 1 — c. A lazy RW algorithm
was proposed for superpixel segmentation [23], in which the ran-
dom walker stays at the current node with probability 1 — ¢ and
transfers to adjacent nodes with probability c. These approaches
are typically called graph-based since they use a regular grid
as the image representation domain. One limiting property of
these algorithms is that each segment has to be connected to a
seed. In order to incorporate prior information into the RW ap-
proach and eliminate this constraint, Grady [12] proposed the
use of an augmented graph where the additional nodes were con-
nected to the original image’s nodes. Similarly, Dong et al. [7]
proposed a unifying sub-Markov RW method (subRW), which
can be viewed as an extension of RWR where additional nodes
were added to the original image graph providing various in-
formation. In [3], normalized graph-driven diffusion and RW
schemes (normalized RW (NRW) and lazy NRW (LNRW)) are
proposed for arbitrary graph image segmentation.

The common ground among all the aforementioned algo-
rithms is that they consider only similarity of pixel values, which
causes inadequacy of data features. Meanwhile, the output of
RW algorithms relies largely on the user tags since they only
use information contained in tags and the transition probability
between adjacent pixels. Particularly, meticulous scribbles are
needed for different segmentation tasks. Furthermore, once
users ensure the precision of prior and scribbles, the number of
segments is fixed and segmentation result is unadjustable.
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To solve these drawbacks, a novel hierarchical-biased RW
(HBRW) model is proposed. First, the proposed method uses
features including edge region extracted by fractional differen-
tial and histograms to incorporate more information, which mit-
igates the inadequacy of features. After feature extraction, learn-
ing method based on Dirichlet process mixture model (DPMM)
is applied to adaptively get tags. Since DPMM is determined
by the concentration parameter, which helps the users specify
a level of resolution for segmentation rather than specifying a
number of image segments. Then, the adaptive mixture model
is established as a priori constraint for the RW algorithm op-
eration. Finally, the probabilities are computed based on the
random walker starting from each node reaching the prior nodes
in the extended graph with multiple layers. On each layer, this
is an RW process with global and class specific prior. Finally,
segmentation results with different number of class for various
tasks are obtained.

Compared with previous methods, the main contributions of
the proposed HBRW are summarized as follows.

1) Except of using basic texture in spatial space, edge infor-
mation with fractional differential operation is preserved,
which makes image high-frequency more prominent while
preserving smooth area.

2) Different from traditional RW methods that rely on manual
tags, the proposed HBRW employs DPMM learning for
hierarchical label prior, including global and local guides
with more comprehensive information.

The outline of the paper is as follows. We first discuss re-
lated work about graph notation and RW in Section II. Then, the
proposed HBRW model for image segmentation is discussed
in Section III. In Section IV, the experimental results are pre-
sented. Finally, Section V ends this paper with some concluding
remarks.

II. PRELIMINARIES

An image is considered as a weighted, undirected and con-
nected graph G = {V, E, W}, where V is a finite set of vertices
V with |[V| = N, E'is a set of edges, and W is a weighted adja-
cency matrix (e.g., [5] for all definitions in this section). The
non-normalized graph Laplacian is defined as L :=D — W,
where D is the diagonal degree matrix with the nth element
dn =3, £n Win being the degree of vertex n. A weight
w;; € W of edge e;; measures the likelihood that a random
walker will cross this edge. As many other algorithms based on
graph expressed, a weight w;; is formulated as

I. — I.|1?
W;j = exp <—|ZUJ||) + e (1)

where I; and I; are the pixel intensities at two nodes v; and v,
o is the controlling parameter and ¢ is a small constant as 106,
Standard RW on a graph can be described as a Markov process
with transition probability matrix

K 0, otherwise

which can also expressed as matrix operations Q = D~ 1W. Ac-
cording to spectral graph theory [5], RW converges to a unique

stable probability distribution 7, which satisfy the following bal-

ance equation m; = fviiid.
i=1 @i

One limiting property of the traditional RW is that each seg-

ment has to be connected to a seed. In order to overcome the

limitation, biased RW (BRW) [1] was proposed [4]

P @) = (1= ¢) Y rD()wij + ez(i) @)

i~

where 0 < ¢ < 1 is a controlling parameter, and z is called bi-
ased distribution. z is a probability distribution that z(z) > 0 and
>, 2(i) = 1. Setting r as the distribution of the random walker
at time ¢, the distribution at ¢ + 1 is given by 7/*1. Equation (3)
describes an RW process in which the RW hops on the graph
G with the transition probability 1 — ¢ and may hop to other
vertices specified by prior distribution with probability c.

III. PROPOSED HBRW

The proposed HBRW is illustrated in Fig. 1, where we first
extract edge regions using fractional differential, which is further
combined with histograms to obtain plentiful features. Then,
DPMM is used to get hierarchical prior distributions. At last,
prior distribution and seeds for each class are used to compute
final reaching probabilities. According to the task requirements,
parameters are adjusted to provide output with particular number
of segments.

A. Fractional Differential for Edge Detection

Various features play an important role in image segmentation
pretreatment. However, traditional RW algorithms only consider
the pixel values. For the lacking of other features, statistical in-
formation of pixel intensity and texture information are missed,
which further results in low segmentation quality. To achieve re-
liable output, the proposed HBRW combines low-level features,
such as pixel intensity and edge.

Given an image, observations (pixels) are extracted using the
histogram clustering [22]. Specifically, multichannel images are
converted into gray image to form the histogram vectors. Edge
detection methods use the discontinuous distribution of the pixel
intensity, and extract the external contour of the target object for
the gray point mutation site. The traditional edge detection op-
erators, such as gradient operator and Laplace operator, can only
detect steep edges, but some edges formed by changing intensity
slowly are ignored. Also, the antinoise performance of the tradi-
tional edge detection operator is poor. Thus, fractional differen-
tial operation is considered for edge detection [21]. Fractional
differential is more sensitive and better in antinoise performance.
The differential representation of fractional differential is

DY J(i) ~ (i) + (—0)f(i — 1)+ ---

+(_”)(+”+1)f(¢—2)+

I'(—v+1) .
n!l(—v+n+1) fi=mn)
“4)
where D" f(i) is the v order fractional differential of original
signal f(i), and I'(a) = [" e 2% 'dx = (o — 1)\.
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II. Label Prior
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Flowchart of the proposed HBRW model for urban remote sensing image segmentation. In Part II, blue nodes p(h|0)) are DPMM distribution without

edge feature. Green nodes are unseeded nodes while other color nodes are extracted seeds s(n, k). Then, in Part ITI, blue nodes z(h|fy ) are prior distribution of
BRW. Ellipse nodes denote the original nodes and circle nodes are auxiliary nodes. Only part of the transition edges are shown for simplification.

For digital image processing, the shortest distance from the
gray change of the two-dimensional (2-D) image signal is be-
tween two pixels, so the duration of the 2-D digital image in
two axes can only be measured in pixels. The partial fractional
differential of pixel I(, j) is defined as

D) ~ 16, 3) + ()G~ 1, )+ 2 1 g )
DI ~ 1. 3) + ()16~ )+ T2 g )
&)

The fractional differential can improve high-frequency signals
while nonlinearly preserving low-frequency signals [21]. Frac-
tional differential is used to make the image edge more promi-
nent while preserving the image texture information of smooth
area. By subtracting the corresponding pixel value of the original
image, we can get the edge information, which has been changed
by fractional differential operation, i.e., ER = DV(I) — I. As
step I in Fig. 1, both pixel intensity feature and edge feature are
extracted for segmentation.

B. DPMM Learning for Label Prior

A core issue of segmentation models is how many segments
should be inferred from an image. Standard RW algorithms need
great manual work in scribbles marking to decide the number of
segments. To avoid this, DPMM learning is employed to replace
the number of segments under human decision with adaptively
generated prior distribution (more details about DPMM learn-
ing can be seen in [10] and [22]). The Dirichlet process (DP) is
defined from the aspect of set partitioning. Suppose that H is a
distribution on the measure space © and « is a positive value.
For arbitrary finite measure division Ay,..., A,, the distribu-
tion G and vector (H(A4),...,H(A,)) are arbitrary. Then,
the DP is defined by the base distribution H and the concentra-
tion parameter «, which can be expressed as Gy ~ DP(«, H)
when

(Go(A1), ..., Go(A) ~ DP(aH(Ay), ..., aH(A,)). (6)

Let h; € R denote the ith observation, where 7 is the number
of pixels in /. We then model the distribution where h; is gener-
ated. Draw a parameter 6; ~ G and then h; ~ F(-|6;), where
Fis the probability model associated with a mixture component.
DPMM is based on the DP priors with parameter 6;. Suppose
that the prior distribution G is uncertain and drawn from a
DP Gy ~ DP(aH), the hierarchical model of DPMM is repre-
sented as

hi ~ F(-16;)
0; ~ Gy

Gy ~ DP(aH). (7)
In Section III-A, observations are identified with sites ¢ =
1,...,n. A histogram window is placed around each site and
draw h; from the intensity values /; of all the pixels in the win-
dow. The size of window is described as data value number
Nbin for the whole image. Each histogram bin is expressed as
hi = hi1, ..., hinbin- Assuming that a label k£ has an intensity
distribution Py, for each node, where the elements indicated by
p(h;|0)) means the probability belonging to Py, at the ith obser-
vation. The distribution learnt by DPMM is as follows:

p(hil6x) = Go(0x) T] F(hil6)
i|Si=k

®)

where G(0},) is the base measure. F'(h;|0},) is the likelihood of
kth class.

In the proposed HBRW method, p(h|6},) is the label prior for
all nodes in V', which can be used for both seeded and unseeded
nodes. Unlike traditional RW algorithms, which need user tags at
particular pixels (seeds), the proposed method draw partial nodes
from the hierarchical label prior p(h|fy) as tags. Since these
nodes are uniformly drawn from prior distribution, the number
of classes is decided by the seeds. Naturally, a lower percentage
of seeds is corresponding to less effects of prior distribution.
Hierarchical prior distribution and its corresponding seeds as
global and local guide are designed for BRW.
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Fig. 2. Nodes graph with hierarchical prior nodes of the proposed HBRW.
Ellipse nodes denote the original nodes and circle nodes are auxiliary nodes.
Green nodes are unseeded nodes, blue nodes z(h|0y) are prior distribution
combining DPMM and edge distribution, other color nodes are seeds s(n, k).
Only part of the transition edges are shown for simplification.

s(n,k)

C. Segmentation via BRW

Three parts of prior information are obtained including global
probability distribution p(h|0},), edge distribution ER(6},), and
seeds map S. The prior information is added to construct a graph
with prior G’ as shown in Fig. 2. For the global prior distribu-
tion, each node is connected with all nodes in V. To combine
two kinds of global prior information, the weights w;.(n,,,) 18
defined as

= (1 = c)rz(hil0r) ©

where the prior distribution Z = z(h|fy) is decided by
DPMM posterior distribution P = p(h|6)) and edge distribu-
tion ER(0y). Using Bayes theorem, given prior edge region
distribution and the likelihood function p(h|6}), the posterior
distribution of A is derived as

z(h|0k) o< ER(0) * p(h|Ok) (10)

the posterior distribution z(h|6}) of & is then used as the global
prior distribution of BRW. -

Then, the transition probability Q on V' U S U Z is formulated
as

c, ifieV,jes
(11—l ificv jez
q(i,) = § (L—)gqig, ifj~ieV an
p(hi|0r), ifi=jeVus
0, otherwise
K
where g; = >, 2(hi|0g).

Given the transition probability ) on a graph with prior G,
the reaching probability 7(h;|0) that a random walker from a
node v; € V reaching seeds s(n, k) with label & or prior node
z(h|0}) is formulated as

_ w;;T(hyi|Ok)
. — 1— J J
o) = 3 (1- o st
jieV
Rewriting [1(h;|0x)] v+1 as a vector T¥, the vector formulation
can be shown as

K= (1 - D)W + (I - D)7 + D S"

= (I—(I-Do)W) (I - De)z* + Dep*s¥)

=0 (I~ De)z" + Dp*s¥) (13)

where O= (I — (I-D.)W), the transition probability matrix
W = [* Jnwn is defined as W, =7 +/\g the prior distri-
bution z* = [Z(h;|0k)] N1 is deﬁned as Z(h;|0g) = %ﬁ’:)
while pXS¥ = [p(h;|01) * s(n, k)] n«1 indicates the extracted

seeds distribution.
Then, the segmentation target can be obtained as

R; = arg H%axf(hiwk) (14)
k

where R; is the result of single resolution segmentation under the
influence of fixed prior distribution. R; does not only consider
the similarity between adjacent positions as the classical RW
algorithm, but also contain the prior distribution information
determined by the image features including pixel intensity and
edge region. Although the HBRW algorithm is based on RWs, it
can also be interpreted as a general energy optimization problem
(the optimization explanation of the proposed HBRW is given
in the Appendix).

IV. EXPERIMENTATION RESULTS AND ANALYSIS

In this section, experimental results are presented to illus-
trate the effectiveness of the HBRW model for high-resolution
remote sensing images segmentation. The compared methods
include traditional RW [13], RWR [18], state-of-the-art sSubRW
[71, NRW, and LNRW [2] as well as other probabilistic meth-
ods including probabilistic graph matching (PGM) [17], DPMM
[22], and variational method (TV) [29]. The codes of these algo-
rithms are offered by the authors and the suggested parameters
in their experimentation are used as well in our experimenta-
tions. The proposed method is described in Algorithm 1. These
compared methods with their corresponding parameters are de-
scribed as follows.

1) RW: The standard RW algorithm only consider spatial in-
formation and at each pixel, the tag with the maximum
probability is selected as the final tag to obtain the final
segmentation results.
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Algorithm 1: HBRW model.

Require: original image img, concentration parameter c,
weight of seeds ¢, weight of prior A, order of fractional
differential v, number of iterations Niter.

Ensure: posteriors distribution posteriors, labeled image
labelimg, number of classes K.

1:  Stepl: Initialize

2:  Get histogram feature h; = (h1, ... hiNpin)-

3: Find edge region ER = D"(I) — I using v order

fractional differential.

4: Step2: Hierarchical Prior

5: for iteration < Niter do

6: Generate base measure (G with concentration

parameter o.

7 forsite: =1,...,ndo

8: Assign probability for each class by (8).

9: end for

10: Update the class parameters.

11: iteration = iteration + 1

12:  end for

13:  Step3: Biased Random Walk

14:  Generate seeds s(n, k).

15:  Build graph G with weight matrix 1 and compute

transition matrix Q.
16:  Compute optimal random walk path by (12) and
obtain segmentation result R;.

2) RWR: The RW with restart algorithm not only consider
spatial transition probability, but also consider the proba-
bility for random walker to restart. The restart probability
is set as 0.0004.

3) subRW: Based on the former RW algorithms, the subRW
algorithm take prior distribution, effect of seeds and spa-
tial constraint into consideration. The restart probabil-
ity is set as 0.0004. The parameter for unitary is set as
2e — 10.

4) NRW and LNRW: Graph-driven NRW and LNRW are
applied to image segmentation by developing diffu-
sion processes defined on arbitrary graphs. The restart
probability is set as 0.0001. Region adjacency graph are
used as suggested.

5) DPMM: Nonparametric Bayesian method (DPMM) is ap-
plied to image segmentation problems for freedom of class
number parameter. The concentration parameters « and
number of histogram bins Nbin are optimized the same as
our method.

6) PGM: PGM is an unsupervised and semiautomatic image
segmentation approach where the segmentation is formu-
lated as an inference problem. A and K are optimized for
specific image.

7) TV: Variational method (TV) is applied to image segmen-

tation by researching on total variation minimization. 3 is
set to 0.5 as suggested.

TABLE I
PRIOR KNOWLEDGE OF REAL URBAN REMOTE SENSING IMAGES
FOR FOREGROUND OR BACKGROUND SEGMENTATION

Urban Image Size City
Chicagol 500*500 Chicago
Chicago2 600*400 Chicago
Chicago3 500%400 Chicago
Chicago4 500*500 Chicago
Chicago5 1392%1346  Chicago
Chicago6b 1146%1318  Chicago
Viennal 1500*%1500  Vienna
Vienna2 1200*1560 Vienna

TABLE II

PRIOR KNOWLEDGE OF REAL URBAN REMOTE SENSING
IMAGES WITH MULTIPLE TARGETS

Urban Image Size City
Shanghail 1000*¥1000  Shanghai
Shanghai2 10001000  Shanghai

Beijingl 1000*1000 Beijing
Beijing2 1000*1000 Beijing

A. Experimental Data

In our experiments, eight real high-resolution urban remote
sensing images are utilized to demonstrate the effectiveness of
the proposed method in foreground or background segmenta-
tion. As shown in Fig. 9, four of these images are simple scenes
in Chicago including few buildings while the others are com-
plicate scenes in Chicago and Vienna [20]. The detailed infor-
mation about these images are depicted in Table I. As listed in
Table II, another four real high-resolution urban remote sensing
images in Beijing and Shanghai are utilized to demonstrate the
effectiveness of our method in multiple targets segmentation.

B. Parameter Analysis

The segmentation performance is closely related to the de-
signed architecture of our HBRW. In order to validate the
proposed HBRW, we compare the segmentation results using
different parameters in this paper. The fractional differential or-
der v is discussed with comparison to other edge detection op-
erators. Then, the number of classes K in segmentation output
is influenced by two resolution parameters o and Nbin. At last,
the influence of weight parameters A and c is analyzed.

1) Fractional Differential Order v: First, the influence of the
fractional differential order and its comparison with integer-
order differential are analyzed. As shown in Fig. 3, fractional
differential of image enhances the high-frequency edge informa-
tion, which makes the edge region of original image enhanced.
At the same time, the pixel intensities are kept to a certain extent
by fractional differential, which makes the relative change of the
gray level in the image smoothing region get nonlinear enhance-
ment. The application of proper-order fractional differential can
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Fig. 3.
Upper: original image (left) and edge region detected by 0.5 order fractional
differential (right). Bottom: edge region detected by average gradient (left) and
1.5 order fractional differential (right).

Edge region of HBRW using different orders of fractional differential.

0.95 - .
—A— Without edge region
Edge region v=0.5
=P~ Gradient
Edge region v=1.5
0.9

0.85

0.8

Dice Coefficient

0.75

0.7

1 2 3 4 5 6 7 8
Number of Image

Fig. 4. Influence of with/without edge features on segmentation performance
(Higher Dice coefficient means better segmentation [27]).

not only extract edge changing sharply, but also keep the continu-
ity of edges. A larger order v € [0, 1] means approaching integer
different while a small order means approaching the original sig-
nal. For a fractional order v € [1, 2], the performance of edge de-
tection is between gradient operator and Laplacian operator. By
considering the experimental analysis of edge region extracted
by fractional differential, the segmentation performance of with
and without edge regions in Fig. 4 illustrate that the HBRW with

—A— Nbins=8§ f

40
Nbins=16
=P~ Nbins=24
35r —3¢= Nbins=32

Number of Classes

10 10 107 102 10!
Concentration Parameter o
Fig.5. Class number with different resolutions of HBRW for different images.

The number K of classes (vertical) are drawn against dispersion coefficient o
(horizontal), with each curve indicates numbers of pixels in each histogram.

Fig. 6.
row: Input image (left) and segmentation result for o = le — 8 (right). Bottom
row: Segmentation results for « = le — 6 (left) and o« = le — 4 (right).

Segmentation results with different concentration parameters. Upper

edge features achieves better performance than that without edge
features.

2) Resolution Parameters o and Nbin: As mentioned be-
fore, the segmentation is influenced by the concentration pa-
rameter o and the number of bins concluded in each histogram
as well. In detail, a larger concentration parameter o lead to
more classes. Here, two examples of segmentations illustrate
this relationship between « and number of classes K in Fig. 5.
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Fig. 7. Segmentation results with different weight parameters ¢ and A with other parameters v = 1.5, &« = le — 5, Npins = 8 using Chicago6 as test im-
age. () c=0.1,A=0.1. (b)) c=0.1,2=0.5.(c) c=0.1,,=0.9. (d) ¢ =0.5,A=0.1. () c= 0.5, =0.5. (f) ¢c=0.5,A=0.9. (g) ¢ =0.9,A =0.1.
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03 Al Tos
o101 2Ty e o1 0r 2y c 01 0r "2y

Fig.8. Segmentation performance with different weight parameters c and A with other parameters v = 1.5, &« = le — 5, Npips = 8 using Chicago6 as test image.

The observations are as follows: 1) A larger value of o leads classes are created from the initial distribution. Thus, a proper
to creating more classes; 2) a tremendous value of « brings concentration parameter chosen for segmentation is rather sig-
too many classes, which means part of the actual result is nificant. With same concentration parameter, the number of pix-
treated as a new class; and 3) when the value is smaller than a  els concluded in each histogram also influence the class number.
threshold, the number of classes will be 1, this means no new It is obviously depicted in Fig. 5 that more pixels concerned
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Fig. 9.
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Comparison results of the proposed HBRW with other algorithms for foreground/background problem of simple scenes. (a) Input urban remote sensing

images. (b) Ground truth (GT), (c)—(i) are segmentation results of TV [29], PGM [17], DPMM [22], RW [13], RWR [18], subRW [7], LNRW [3]. (j) Segmentation
results of the proposed HBRW method.
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Comparison results of the proposed HBRW with other algorithms for foreground/background problem of complicated scenes. (a) Input urban remote

sensing images. (b) GT, (c)—(i) are segmentation results of TV [29], PGM [17], DPMM [22], RW [13], RWR [18], subRW [7], LNRW [3]. (j) Segmentation results

of the proposed HBRW method.

in each histogram, more classes created in the segmentation
output.

The example in Fig. 6 shows that the classes are accurately
segmented under different levels of resolution (« varying from
le — 8 to le — 4). When a = le — 8, the prior of RW is too
weak so that image segments are joined erroneously. It can be
seen from the images that the proposed algorithm can distinguish
more details as concentration parameter growing.

3) Weight Parameter A and c: The weight parameters also
affect the performance of proposed HBRW. The parameter A
means the weight of prior distribution comparing with the tran-
sition probability on particular nodes. A larger A leads to greater
influence of prior distribution, which makes the segmentation
containing more details as well as noise from prior distribution.

On the contrary, a small A leads to greater influence of tran-
sition probability, which means more weights on spatial con-
striction for smoothing the segmentation. As shown in Fig. 7,
a balance between details and smoothness is decided by A.
At the same time, another significant weight parameter ¢ con-
trols the weight of seeds information from the prior distribu-
tion. The proposed algorithm uses the seeds weight parameter
c to control the contribution of seeds to the global optimum.
A larger ¢ means greater influence of prior fixed seeds, while
smaller ¢ means more influence caused by transition probabil-
ity and prior distribution. Fig. 7 shows the segmentation re-
sults with different ¢ and A, which control the weight of seeds
and prior distribution. To select optimal weight parameters, an
extensive parameter search is conducted, as shown in Fig. 8.
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TABLE III
QUANTITATIVE MEASURES FOR FOREGROUND OR BACKGROUND SEGMENTATION WITH SIMPLE SCENES

Image Measures Model HBRW
vV PGM DPMM RW RWR SubRW NRW LNRW  HBRW  Parameter Value
DICE 0.7091 0.7368 0.6704 0.6275 0.4178 0.5024  0.6092  0.6075 0.8808 « le—7
JAC 0.5493 0.5833 0.5042 0.4571  0.2648 0.3354 04380 0.4363 0.7871 Nbin 8
Chicagol TPR 0.5974 0.6495 0.5276 0.5637 0.5478  0.9181 0.4438  0.4392 0.9228 A 0.2
PPV 0.8721 0.8512 0.9194 0.7075  0.3389  0.3458 0.9708  0.9846 0.8425 [ 0.2
v 1.5
DICE 0.9088 0.9194 0.9288 0.7400  0.6600  0.8455 0.8322  0.8312 0.9579 a le -7
JAC 0.8329 0.8509 0.8567 0.5873  0.4925 0.7324  0.7126  0.7112 0.9193 Nbin 8
Chicago2 TPR 0.8816 0.9157 0.8884 0.6012  0.8528  0.9045 0.8609  0.8588 0.9398 A 0.2
PPV 0.9379 0.9231 0.9600 0.9621 0.5383  0.7938 0.8054  0.8054 0.9768 c 0.2
v 1.5
DICE 0.9031 0.9159 0.9255 0.7919  0.6064  0.7821 0.7662  0.7748 0.9404 a le -7
JAC 0.8233 0.8448 0.8613 0.6555 0.4352  0.6421 0.6211 0.6324 0.8875 Nbin 8
Chicago3 TPR 0.8773 0.9168 0.9339 0.7002  0.4884  0.7135 0.7851 0.7874 0.9360 A 0.2
PPV 0.9304 0.9150 0.9172 09113 0.7996  0.8652 0.7483  0.7626 0.9449 [ 0.2
v 1.5
DICE 0.6338 0.7149 0.7039 0.8647  0.3871 0.6936  0.8685  0.8721 0.9127 « le—7
JAC 0.4639 0.5563 0.5431 0.7617 0.2400  0.5310 0.7676  0.7732 0.8394 Nbin 8
Chicago4 TPR 0.5054 0.6275 0.6077 09154 0.7068  0.9096  0.8498  0.8390 0.9380 A 0.01
PPV 0.8498 0.8306 0.8363 0.8193  0.2665  0.5605 0.8881 0.9079 0.8887 c 0.01
v 0.5
TABLE IV
QUANTITATIVE MEASURES FOR FOREGROUND OR BACKGROUND SEGMENTATION WITH COMPLICATED SCENES
Image Measures Model HBRW
TV PGM DPMM RW RWR SubRW NRW LNRW  HBRW  Parameter Value
DICE 0.6373 0.6947 0.7074 0.3647  0.1492  0.6486  0.7370  0.7386 0.7548 e’ le—5
JAC 0.4677 0.5323 0.5473 0.2230  0.0806  0.4799  0.5836  0.5856 0.6062 Nbin 16
Chicago5 TPR 0.5382 0.6555 0.7024 0.3093  0.1438  0.5526  0.7054  0.7233 0.7979 A 0.5
PPV 0.7812 0.7390 0.7125 0.4442  0.1150 0.7848  0.7717  0.7547 0.7162 c 0.4
v 1.5
DICE 0.6732 0.7103 0.6346 0.4550  0.4062  0.6684  0.6590  0.6651 0.7277 a le—5
JAC 0.5074 0.5508 0.4648 0.2945 0.2548  0.5020 0.4914  0.4982 0.5719 Nbin 16
Chicago6 TPR 0.6268 0.7672 0.9580 0.3841  0.3660 0.6097 0.5376  0.5535 0.8750 A 0.7
PPV 0.7270 0.6613 0.4744 0.5582 0.4562 0.7397 0.8513  0.8329 0.6228 c 0.4
v 1.5
DICE 0.5465 0.4086 0.7022 0.2823  0.0905 0.6266  0.6000  0.6165 0.7304 « le — 22
JAC 0.3760 0.2568 0.5411 0.1643  0.0474  0.4562  0.4285 0.4456 0.5752 Nbin 8
Viennal TPR 0.4494 0.4156 0.7494 0.2450 0.1287 04713  0.4661 0.4879 0.8619 A 0.6
PPV 0.6973 0.4018 0.6606 0.3329  0.0698  0.9346 0.8417 0.8373 0.6336 c 0.8
v 1.5
DICE 0.2740 0.1278 0.7383 0.2808  0.1081 0.4810  0.8181 0.8141 0.8428 e’ le — 22
JAC 0.1587 0.0682 0.5852 0.1633  0.0571 0.3166  0.6922  0.6865 0.7284 Nbin 8
Vienna2 TPR 0.2035 0.1300 0.9962 0.2264 0.1128  0.3342  0.7487  0.7752 0.9494 A 0.6
PPV 0.4193 0.1256 0.5865 0.3695 0.1038  0.8574 09017 0.8571 0.7578 c 0.8
v 1.5

Specific weight parameters are used for better segmentation
performance.

C. Segmentation Performance

In this section, the segmentation performance of the proposed
method is compared with other RW algorithms. First, in the
foreground or background segmentation, we test the effective-
ness of the proposed method on real urban high-resolution re-
mote sensing images as shown in Figs. 9(a) and 10(a). The
corresponding GT segmentation results are illustrated in
Figs. 9(b) and 10(b). Figs. 9 and 10(c)-(i) provide the seg-
mentation results of TV, PGM, DPMM, RW, RWR, subRW,

and LNRW. Figs. 9(f) and 10(f) show the segmentation results
by the proposed HBRW. Comparing with other algorithms, the
proposed HBRW performed better in identifying details quali-
tatively. It segmented out not only the main part of the target,
but also edge region and twigs details. This is due to the edge
detected by fractional differential.

Due to the availability of the GT segmentation, several met-
rics are employed for evaluation [27]. For two segmentations .S,
and S}, the confusion matrix consists of the four common cardi-
nalities that reflect the overlap between the two segmentations,
namely the true positives 7' P, the false positives F'P, the false
negatives F'IN, and the true negatives T'N. These cardinalities
provide for each pair of subsets ¢ € Sy and j € S;; the sum of
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Fig. 11.

Comparison results of the proposed HBRW with other algorithms for multiple targets problem. (a) Input urban remote sensing images. (b) GT, (c)—(i) are

segmentation results of TV [29], PGM [17], DPMM [22], RW [13], RWR [18], subRW [7], LNRW [3]. (j) Segmentation results of the proposed HBRW method.

TABLE V
QUANTITATIVE MEASURES FOR MULTIPLE TARGETS SEGMENTATION

I Average Measures Model HBRW
fage verage Meastres v PGM___DPMM __RW __ RWR _ subRW __NRW _LNRW HBRW _ Parameter _ Value
DICE 0.6669 0.4846 0.6493 0.4986  0.5286  0.6963  0.6938  0.7604  0.7527 o le—5
JAC 0.5143 0.6373 0.5167 0.3530 0.3881  0.5832  0.6037  0.6636  0.6080 Nbin 16
Shanghail TPR 0.5827 0.3715 0.5615 0.6572  0.5789  0.7073  0.6279  0.6714  0.8117 A 0.6
PPV 0.8375 0.6966 0.7791 04154 05042  0.6950 0.8154 0.9560  0.7084 c 0.5
v 1.5
DICE 0.6757 0.5457 0.7670 0.6934  0.7379  0.7678  0.5872  0.6102  0.7533 o le—5
JAC 0.5535 0.6755 0.6506 0.5576  0.6052  0.6553  0.4627 0.4891 0.6272 Nbin 16
Shanghai2 TPR 0.5977 0.4418 0.7519 0.8358  0.8724  0.9497 0.6560 0.6684  0.8616 A 0.6
PPV 0.8986 0.7133 0.7834 0.5957 0.6418 0.6710 0.5322  0.5654  0.6854 c 0.5
v 1.5
DICE 0.6069 0.5335 0.6244 0.3303  0.4871  0.3621  0.3226  0.3838  0.6667 o le — 6
JAC 0.4908 0.4185 0.5618 0.1998  0.3219  0.2263  0.1939  0.2475  0.5478 Nbin 16
Beijingl TPR 0.5189 0.4315 0.6259 0.2185 09180 0.8550 0.1967 0.2863  0.6833 A 0.7
PPV 0.9233 0.9409 0.8147 0.7801 03317 0.2482  0.9226 0.8346  0.6552 c 0.5
v 1.5
DICE 0.5739 0.3263 0.7035 0.4234  0.4306 0.6686  0.4910 0.5073  0.7277 o le — 6
JAC 0.4095 0.4106 0.5449 0.2709  0.2747  0.5194 0.3254  0.3403  0.5726 Nbin 16
Beijing2 TPR 0.4302 0.2094 0.8098 0.8571 0.6694  0.8891 0.3612 0.3841  0.8507 A 0.7
PPV 0.9090 0.6364 0.6131 0.2841 03590 0.5726  0.7995  0.7989  0.6358 c 0.5
v 1.5
agreement m;; between them is as follows: Similarly, the Jaccard index (JAC) is defined as the intersection
between the two segmentations divided by their union
X
15) 1S3 NS TP

mij = ngi(xr)fg(xT)
r=1

where TP = mi1, FP = mio, FN = moi, and TN = moo-
Then, we have the calculation of over lap based metrics as the
Dice coefficient and the Jaccard index. The Dice coefficient
(DICE) is also called the overlap index. In addition to the di-
rect comparison between automatic and GT segmentations, it is
common to use the DICE to measure reproducibility. The DICE
is shown as

215y NS 2TP
IS} +|St  2TP+FP+FN’

DICE = (16)

JAC =

- . 17
|StUSt|  TP+FP+FN a7

A higher score indicates better segmentation performance.
These metrics are effective for objective evaluation. Some
specific measures for sensitivity and precision evaluation are
needed. True positive rate (TPR) measures the portion of pos-
itive pixels in the GT that are also identified as positive by the
segmentation being evaluated, which is defined as

TP

TPR = ——.
TP + FN

(18)
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TABLE VI
EXECUTION TIME (IN SECONDS) IN THE THREE EXPERIMENTAL DATA SETS

Dataset Table.l Table.Il Table.I
Image Size  500%500  1000*1000  1500*1500
TV 0.37 1.53 2.39
PGM 24.88 640.39 850.22
DPMM 42.13 205.65 367.56
RW 1.44 7.92 12.09
RWR 1.66 8.32 19.54
subRW 1.72 10.25 17.861
NRW 21.96 78.37 333.25
LNRW 27.15 78.37 371.88
HBRW 44.75 217.84 394.74

Another related measure is the precision, also called the positive
predictive value (PPV), which is defined as

TP

PPV = ———.
TP + FP

19)

The quantitative comparison shown in Tables III and IV de-
picts that the improvements over other RW algorithms are evi-
dent. To obtain proper number of classes under similar scenes,
fixed resolution parameter o and Nbins are used. To improve
segmentation performance, optimal weight and fractional-order
parameters of the proposed model are founded by an extensive
parameter search. Specific parameters are listed in Tables III
and IV for clarity.

Another important segmentation problem is the multiple tar-
get segmentation, we choose the real urban remote sensing im-
ages including two or more objects as shown in Fig. 11(a) with
their detail information listed in Table II. The corresponding GT
maps are shown in Fig. 11(b). Fig. 11(c)—(i) provides the seg-
mentation results of TV, PGM, DPMM, RW, RWR, subRW, and
LNRW. Fig. 11(j) illustrates the segmentation results by the pro-
posed method, which performs better in identifying details for
multilabel problem qualitatively. In quantitative comparisons,
the measures in Table V also confirm the significant improve-
ment of the proposed algorithm.

The computational complexity of the aforementioned RW
methods are summarized in Table VI. All the average run time
in Table VI are measured in seconds with our MATLAB im-
plementation. The configuration of the used PC is Intel Core
i7-6700 CPU @3.40 GHz with 16 GB RAM. The proposed ap-
proach runs slower than other RW algorithms due to additionally
building label prior and optimization process of DPMM. Longer
run time is a shortcoming of the proposed HBRW algorithm.

V. CONCLUSION

In this paper, a novel HBRW model was proposed for seg-
mentation of urban high-resolution remote sensing images. This
model can be explained as a traditional random walker that walks
on the graph by adding hierarchical prior distributions. While
the region information was obtained from histograms and edge
information by fractional differential, the prior distribution was

computed with proper resolution parameters. The experiment re-
sults demonstrated that the proposed HBRW performed well on
and was proved applicability and practicability in complex im-
ages segmentation. Some other quantitative analysis confirmed
its effectiveness, especially when compared with other state-of-
the-art algorithms.

APPENDIX
OPTIMIZATION EXPLANATION OF HBRW

We describe the optimization explanation of the proposed
HBRW with more details for completeness. Take a fixed pair
of nodes ¢ and j as an example, a random walker is considered
start from node ¢ and finally reached node j. And let R be the set
of all paths from nodes 7 to nodes j in the expanded graph with
prior G. Given L, one can describe the squared variations of the
signal with respect to GG using the graph Laplacian regularizer

1 2
WY Lh = 3 > (hi = hy)* Wi

(i,j)€e

(20)

Assuming the whole path r energy is E(r) and the total energy
is additive that for a path r, the following objective function is
considered for class k

1 N N
E(r(0x) =53 D> wij(r(hilfk) — r(hl06))" + -

i=1 j=1
1< (d; + rgi)c
i i 2
+72§ e (r(hi|0k) — z(hil0k))” + - -

i=1

1 )
+5 ;)\.Z(hi|9k>(7‘(hi|9k) )P

K N

D7 ka(hilm)r(hil0r)?.

m=1,m#*k i=1

21

Correspondingly, with graph Laplacian regularizer in (20), the
vector formulation of above equation is

1
E(rk) = 5[rk}T(D —W)rk 4 -
1w 1\ T(D+ADg)De i
+§(I‘ VA ) ﬁ(r VA )+
+&(rk_I)TDk(rk_I) T & i [rk]TDmrk
2 ’ 2 m=1m#k : .

(22)

In order to get the minimum energy of paths in every class, the
partial derivative of r”* is taken

OE(rk) D + D;)D,

_ _ k ( k __k
ek =(D-W)rc+ I D, (r—2z%) +
K
+ | DErk 4 Z Dok — gk (23)

m=1m#*k
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k
Setting 8%5’,:, ) = 0, the optimal solution is obtained for every

class, which is the same with the result of HBRW in (13). From
the representation of energy, we can see four parts of energy con-
stitute it. The first component represent the energy of unbiased
RW as a smoothing term. Minimizing this part means keeping
nodes gather to the prior nodes. The second part can be consid-
ered as the energy of random walker reaching seeds, which is
decided by prior distribution. Minimizing this part means keep-
ing nodes gather to the prior nodes. The third part and last part
respectively indicate reaching probabilities to nodes in the prior
distribution of current class labels and labels for other classes.
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